

технические данные

Трименяемые системь

С водяным охлаждением EWWP014-065KAW1N 16Hp - 72Hp

С водяным охлаждением EWWP014-065KAW1N 16Hp - 72Hp

Компания Daikin занимает уникальное положение в области производства оборудования для кондиционирования воздуха, компресоров и кладагентов. Это стало причиной ее активного участия в решении экологических проблем.
В течение нескольких лет, деятельность компании Daikin была направлена на то, чтобы достичь лидирующего положения по поставкам продукции, которая в минимальной степени влияет на окружающую среду.

Эта задача требует, чтобы разработка и проектирование широкого спектра продуктов и систем управления выполнялись с учетом экологических требований, и были направлены на сохранение энергии и снижение объема отходов.

ISO14001 обеспечивает эффективную систему мер по охране окружающей среды, помогающую защитить здоровье человека и окружающую среду от потенциального воздействия нашей деятельности, продукции и услуг и направленную на поддержание и повышение качества окружающей среды.

Компания Daikin Europe N.V. прошла аттестацию своей Системы управления качеством по стандартам обеспечения качества согласно регистру Ллойда в соответствии с ISO9001. ISO9001 определяет качество в отношении проектирования, разработки, производства, а также услуг, относящихся к продукции.

Блоки от фирмы Daikin Europe N.V. удовлетворяют требованиям Европейских норм, гарантирующих безопасность изделия.

DAIKIN EUROPE N.V.

Naamloze Vennootschap Zandvoordestraat 300 B-8400 Ostend, Belgium www.daikin.eu

BTW: BE 0412 120 336

RPR Oostende

Компания Daikin Europe N.V. принимает участие в Программе сертификации EUROVENT для кондиционеров (АС), жидкостных холодильных установок (LCP) и фанкойлов (FC); данные о сертифицированных моделях включены в Перечень сертифицированных изделий EUROVENT.

"Настоящая публикация составлена только для справочных целей, и не является предложением, обязательным для выполнения компанией Daikin Europe N.V. Содержание этой публикации составлено компанией Daikin Europe N.V. на основании сведений, которыми она располагает. Компания не дает прямую или связанную гарантию относительно полноты, точности, надежности или соответствия конкретной цели содержания публикации и продуктов (и услуг), представленных в ней. Технические характеристики (и цены) могут быть изменены без предварительного уведомления. Компания Daikin Europe N.V. отказывается от какой-либо ответственности за прямые или косвенные убытки, понимаемые в самом широком смысле, вытекающие из прямого или косвенного использования и/или трактовки данной публикации. На все содержание распространяется авторское право Daikin Europe N.V."

технические данные

Применяемые системы

С водяным охлаждением EWWP014-065KAW1N 16Hp - 72Hp

R-407C

Только охлаждение

Только обогрев

Тепловой насос

СОДЕРЖАНИЕ

EWWP-KAW1N

1	Характеристики6
2	Описание технических характеристик
3	Технические характеристики 9 Технические характеристики 9 Электрические характеристики 12
4	Дополнительные функции15
5	Системы управления17
6	Таблицы мощности 19 Таблицы мощности охлаждение/обогрев 19 Поправочный коэффициент мощности 24
7	Чертеж в масштабе и центр тяжести 25 Чертеж в масштабе 25 Центр тяжести 30
8	Схема трубной обвязкиз2
9	Монтажная схема 38 Монтажная схема 38
10	Данные по шуму 49 Спектр з вуковой мощности49
11	Рабочий диапазон52
12	Рабочие характеристики гидравлической системы54
	Кривая перепада давления воды испаритель/конденсатор 54

1 Характеристики

- Спиральный компрессор Daikin
- Конструкция оптимизирована для работы с хладагентом R407C
- Электронная система управления с цифровым дисплеем
- Низкий уровень шума при работе
- Низкий уровень потребления энергии
- Возможно увеличение мощности до 72 л.с.
- Компактные размеры и малый объем хладагента
- Простота монтажа и эксплуатации

- Пластинчатый теплообменник из нержавеющей стали
- Выбор режима охлаждения или нагрева с помощью пульта дистанционного управления
- Водо-водяной тепловой насос с циркуляцией воды.
- Совместим с гидравлическим модулем
- Для EWWP014-065KAW1N включены следующие стандартные компоненты: главный выключатель, точки замера давления, реле протока, фильтр, запорные клапаны и воздухоотделитель.

2 Описание технических характеристик

Конструкция блока

Компактный, модульный чиллер с водяным охлаждением, предназначен для внутренней установки, IP24 - изготовлен в соответствии со стандартом качества ISO9001.

Номенклатура моделей EWWP-KAW1N предназначена как для систем кондиционирования воздуха, так и для охлаждения в технологических процессах. Использование современных технологий и высококачественных материалов гарантирует эффективность, надежность и повышенный срок службы систем.

Каждый чиллер DAIKIN проходит многочасовые заводские испытания с учетом стандартных требований.

Корпус / цвет

Оцинкованная сталь, покрытая защитным слоем спеканием порошка. Полностью смонтирован на опорной раме в заводских условиях. Слоновая кость (+/- RAL7044) / код Манселла 5Y7.5/1

Число контуров хладагента

Модели 014-035 одноконтурные, 045-065 - двухконтурные.

Каждый контур хладагента имеет независимую конструкцию, что гарантирует высокий уровень надежности системы. Блоки EWWP045-065KAW1N имеют 2 пластинчатых теплообменника (два контура хладагента / один водяной контур) для минимизации перегрева гидравлической установки.

Компрессор

Полностью герметичный спиральный компрессор DAIKIN, оптимизированный для работы с хладагентом R-407C, один компрессор на контур хладагента. Конструкция этого компрессора обеспечивает чрезвычайно гладкие рабочие характеристики, высокую эффективность и эксплуатационную надежность. Каждый компрессор смонтирован на блоке, имеющем виброизоляцию, а также устройство защиты максимального тока двигателя компрессора (Klixon).

Конденсатор

Пластинчатый теплообменник с противотоком оптимизирован для работы с использованием хладагента R-407C и выполнен из нержавеющей стали; пластины газостойкие, медная пайка; для водногликолевых смесей. Давление воды не превышает максимально допустимое рабочее давление 10 бар!

Испаритель

Пластинчатый теплообменник DX с противотоком оптимизирован для работы с использованием хладагента R-407C и выполнен из нержавеющей стали; пластины газостойкие, медная пайка; для водногликолевых смесей. В пластинчатых каналах внедрена специальная система распределения хладагента, обеспечивающая оптимальные параметры теплопередачи для всей поверхности. Это также дополнительно увеличивает эффективность работы и обеспечивает устойчивую работу теплообменника. Пластинчатый теплообменник имеет теплоизоляцию, защищен от диффузии для предотвращения потерь теплоты. Электронный контактор и водяной фильтр в составе стандартного комплекта. Давление воды не превышает максимально допустимое рабочее давление 10 бар!

Трубопроводы

Теплообменник имеет медные трубки и все необходимые фитинги системы охлаждения:

рабочие клапаны, фильтры-осушители, TEV с внешним выравниванием давления. Контур хладагента проходит заводские испытания под давлением и на герметичность, очищается, высушивается, вакуумируется, поставляется с защитным хладагентом.

R-407С и заполняется маслом, готовым для эксплуатации.

Защитные устройства и устройства управления

Каждый контур хладагента имеет следующие защитные устройства:

Реле высокого и низкого давления, контроль температуры горячего газа, тепловой выключатель, реле перегрузки и защита от замораживания.

Каждый контур хладагента имеет следующие защитные устройства:

Электронный контроль температуры, реле последовательности фаз, защитное реле времени и ограничитель частоты переключения.

В EWWP014-065KAW1N имеются дополнительное реле расхода, фильтр и запорные клапаны поставляются в стандартной комплектации как испарителя, так и конденсатора.

Устройство переключения и управления

Дополнительно к полностью автоматизированному цифровому пульту управления µ-Chiller (производство CARREL), шкаф управления, изготовленный в соответствии с действующими директивами EN (CE), имеет все необходимые компоненты переключения и управления:

Главный выключатель (только для EWWP014-065KAW1N), выключатели нагрузки, дополнительные и управляющие выключатели, трансформаторы, предохранители цепи управления, реле и дополнительные реле, датчики и цифровой пульт управления µ-Chiller.

2 Описание технических характеристик

Электроника имеет автоматический перезапуск после нарушения электроснабжения и имеет следующие цифровые входы и выходы, подсоединенные жестко разводкой к клеммам для включения GLT:

Цифровые входы:Цифровые выходы:

-Контактор-Сообщение о неисправностях

- -Контакт насоса-Сообщение с общими сведениями о работе
- Дистанционное ВКЛ/ВЫКЛ- Сообщение со сведениями о работе компрессора
- -Охлаждение / Обогрев-Привод насоса холодной воды
- -Реверсивный клапан

Цифровой пульт управления µ-Chiller

Блоки EWWP-KAW1N имеют цифровой пульт управления, позволяющий пользователю конфигурировать, эксплуатировать и обслуживать блок удобным для пользователя способом. Цифровой пульт управления µ-Chiller состоит из цифрового дисплея, 4 кнопок управления и 4 светодиодов.

Электроника поддерживает, среди прочих, следующие функции:

- -Установление заданной температуры и требуемого режима переключения
- -Пульт управления линии возврата холодной воды (режим охлаждения)
- -Пульт управления линии возврата охлажденной воды (режим обогрева)
- -Установление времени цикла / перегрузки насоса
- -Установление интервалов обслуживания
- -Вывод на дисплей текущих рабочих параметров, например, температуры потока и возвратного контура
- -Запись рабочих часов (компрессора / насоса)
- -Запрос о коде неисправности
- -Защита с помощью пароля

Как вариант, этот чиллер имеет интерфейс для интеграции в систему управления зданием (BMS), которая поддерживает протокол MODbus / J-bus или BACnet.

2

	1чЕСКИЕ								
XAPAKTEP	СТИКИ			EWWP014KAW1N	EWWP022KAW1N	EWWP028KAW1N	EWWP035KAW1N	EWWP045KAW1N	EWWP055KAW1N
Мощность (Eurovent)	Охлаждение	Номинал ьный	кВт	13.0	21.5	28.0	32.5	43.0	56.0
Ступени регули	рования		%	1	1	1	1	2	2
ВХОДНАЯ МОЩНОСТЬ (Eurovent)	Охлаждение		кВт	3.61	5.79	7.48	8.75	11.80	15.50
Корпус	Материал				•	Сталь с полиэф	ирной покраской	•	•
Размеры	Блок	Высота	MM	600	600	600	600	600	600
		Ширина	ММ	600	600	600	600	600	600
		Глубина	ММ	600	600	600	600	1200	1200
Bec	Bec		КГ	118	155	165	172	300	320
Водяной	Тип		1			Паяная	пластина		
теплообменник Испаритель	Минимальный воды в систем		Л	62	103	134	155	205	268
	Расход воды	Мин.	л/мин	19	31	40	47	62	80
		Номинал ьный	л/мин	37	62	80	93	123	161
		Макс.	л/мин	75	123	161	186	247	321
	Материал изол	пяции	1			Пенопол	потилен		
	Модель	Количеств	30	1	1	1	1	1	1
Водяной	Тип	- I				Паяная	пластина		
теплообменник	Расход воды	Мин.	л/мин	24	39	51	59	79	102
Конденсатор		Номинал ьный	л/мин	48	78	102	118	157	205
		Макс.	л/мин	95	157	203	237	314	410
	Модель	Количеств	30	1	1	1	1	1	1
Компрессор	Тип				!	: Герметичный спира	и альный компрессо	p	
	Тип масла хла	дагента					FVC68D		
	Объем масла	хладагента	Л	1.5	2.7	2.7	2.7	2.7	2.7
		•••	л		<u> </u>	-	<u> </u>	2.7	2.7
	Модель	Количеств	80	1	1	1	1	2	2
		Модель		JT140BF-YE	JT212DA-YE	JT300DA-YE	JT335DA-YE	JT212DA-YE	JT300DA-YE
		Скорость	об/мин	2900	2900	2900	2900	2900	2900
Уровень шума	Уровень звуковой мощности	Охлажде ние	дБ(А)	64	64	64	71	67	67
Контур	Тип хладагент	a	1		I.	R-4	07C	I.	I.
охлаждения	Объем хладаго		КГ	1.2	2	2.5	3.1	4.6	4.6
	Количество ко		1	1	1	1	1	2	2
	Регулирование		ì		Ter	и омостатический ра	сширительный кла	пан	1
Подсоединение	Вход/выход во			FBSP 25	FBSP 25	FBSP 25	FBSP 25	FBSP 40	FBSP 40
труб	Слив воды исг	·· ·			1		установка	1	1
	Вход/выход во		нсатора	FBSP 25	FBSP 25	FBSP 25	FBSP 25	FBSP 40	FBSP 40
			•		1		установка	1	1

3-1 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	EWWP014KAW1N	EWWP022KAW1N	EWWP028KAW1N	EWWP035KAW1N	EWWP045KAW1N	EWWP055KAW1N
Примечания		<u>Мощность</u>	для диапазона ох	:лажденной воды [Dt = 2~5°C	
	Входная мощн	ость является общ	ей входной мощно	стью (кВт): компре	ссор + цепь управл	пения + насосы
		блицы (kW)/ Dť = П	, , , ,,	атуры охлажденно	х (1/60000) in m³/s й воды в пределах	'
		х Dp (Ра))/0.3 (как		ля охлажденной и	я мощность насосою охлаждающей вод я).	
	В контур воды	•	одимо включить се протока. Мин. объе		стороне испарите нальных условиях	ля необходимо
	Номинальные мо	щности охлаждени		цующих условиях: I /35°C	Испаритель: 12°C/7	7°С; конденсатор:
	Уровень звуковой м	ощности является аб	бсолютной величиной	й, указывающей "моц	цность", производиму	ую источником звука
		Данные об урог	вне шума относятс	я к номинальному	режиму работы	
		дБА = А-взвешен	ный уровень шума	при работе (шкал	а А согласно ІЕС)	
		Эт	алонное звуковое д	давление 0 дБ = 1	pW	
		Измер	ение выполнено в	соответствии с IS	O9614	·

	НИЧЕСКИЕ РИСТИКИ			EWWP065KAW1N	90kw (32hp)	100kw (36hp)	110kw (40hp)	120kw (44hp)	130kw (48hp)
Мощность (Eurovent)	Охлаждение	Номинал	кВт	65.0	86.0	99.0	112	121	130
Ступени регули	ирования	ВПВІЙ	%	2	4	4	4	4	4
BXOДНАЯ МОЩНОСТЬ (Eurovent)	Охлаждение		кВт	17.60	23.6	27.3	31.0	33.1	35.2
Корпус	Цвет				(Слоновая кость / ко	д Манселла 5Ү7.5	/1	
	Материал					Сталь с полиэф	ирной покраской		
Размеры	Блок	Высота	ММ	600	1200	1200	1200	1200	1200
·		Ширина	ММ	600	600	600	600	600	600
		Глубина	ММ	1200	1200	1200	1200	1200	1200
Bec	Bec	1 -	КГ	334	600	620	640	654	668
Водяной	Тип					Паяная г	пластина	l .	
теплообменник Испаритель	Минимальный воды в систем		Л	311	205	268	268	311	311
	Расход воды	Мин.	л/мин	93	123	142	161	173	186
		Номинал ьный	л/мин	186	247	284	321	347	373
		Макс.	л/мин	373	493	568	642	694	745
	Материал изол	пяции				Пенопол	потилен		
	Модель	Количеств	0	1	2	2	2	2	2
Водяной	Тип					Паяная г	пластина		
теплообменник	Расход воды	Мин.	л/мин	118	157	181	205	221	237
Конденсатор		Номинал ьный	л/мин	237	314	362	410	442	474
		Макс.	л/мин	474	629	724	819	883	948
	Модель	Количеств	0	1	2	2	2	2	2
Компрессор	Тип					Герметичный спира	альный компрессо	p	
	Тип масла хла	дагента				Daphne	FVC68D		
	Объем масла	кладагента	Л	2.7	2.7	2.7	2.7	2.7	2.7
			Л	2.7	2.7	2.7	2.7	2.7	2.7
			Л		2.7	2.7	2.7	2.7	2.7
			Л	-	2.7	2.7	2.7	2.7	2.7
	Модель	Количеств	0	2	4	2	4	2	4
		Модель		JT335DA-YE	JT212DA-YE	JT212DA-YE	JT300DA-YE	JT300DA-YE	JT335DA-YE
		Скорость	об/мин	2900	2900	2900	2900	2900	2900
		Количеств	0			2		2	
		Модель		-		JT300DA-YE	-	JT335DA-YE	-
		Скорость	об/мин	1		2900		2900	

3-1 TEXH XAPAKTE	ІИЧЕСКИЕ РИСТИКИ			EWWP065KAW1N	90kw (32hp)	100kw (36hp)	110kw (40hp)	120kw (44hp)	130kw (48hp)
Уровень шума	Уровень звуковой мощности	Охлажде ние	дБ(А)	74	71	71	71	75	77
Контур	Тип хладагента	a				R-4	07C		
охлаждения	Объем хладаге	ента	КГ	5.6	9.2	9.2	9.2	10.2	11.2
	Количество кон	нтуров		2	4	4	4	4	4
	Регулирование	хладагента	1		Tep	омостатический ра	сширительный кла	пан	
Подсоединение	Вход/выход вод	ды из испар	ителя	FBSP 40	2 x 2 x FBSP 38	2 x 2 x FBSP 38	2 x 2 x FBSP 38	2 x 2 x FBSP 38	2 x 2 x FBSP 38
труб	Слив воды исп	арителя				Местная	установка		
	Вход/выход вод	ды из конде	нсатора	FBSP 40	2 x 2 x FBSP 38	2 x 2 x FBSP 38	2 x 2 x FBSP 38	2 x 2 x FBSP 38	2 x 2 x FBSP 38
						Местная	установка		
Примечания					Мощност	ь для диапазона ох	клажденной воды [Ot = 2~5°C	
				Входная мощн	ость является обш	ей входной мощно	стью (кВт): компре	ссор + цепь управ	пения + насосы
				охлаждения из та	блицы (kW)/ Dt = Г блоком не поставл к Dp (Pa))/0.3 (как	о x Dt) in (I/min) = ((8 lовышение темпер (WFR) daima bu sэ яются, поэтому до указано в 6/С/003) авления по кривым	атуры охлажденно nэrlarda olmalэdэr) бавленная входная ля охлажденной и	й воды в пределах мощность насосо охлаждающей вод	c 2~5°C / Su debisi в рассчитывается
				В контур воды	испарителя необх	одимо включить се протока. Мин. объ	тчатый фильтр На	стороне испарите	ля необходимо
				Номинальные мо	щности охлаждени	я основаны на сле, 30°C	цующих условиях: I /35°C	Испаритель: 12°С/	7°С; конденсатор:
				Уровень звуковой м	ощности является а	бсолютной величино	й, указывающей "моц	цность", производиму	ую источником звука
					Данные об уро	вне шума относято	я к номинальному	режиму работы	
					дБА = А-взвешен	ный уровень шума	при работе (шкал	а А согласно ІЕС)	
					Эт	алонное звуковое,	давление 0 дБ = 1	pW	
				дБА = А- взвешенный уровень шума при работе (шкала А согласно IEC)			-		

				,					
3-1 TEXH XAPAKTE	НИЧЕСКИЕ РИСТИКИ			145kw (52hp)	155kw (56hp)	165kw (60hp)	175kw (64hp)	185kw (68hp)	195kw (72hp)
Мощность (Eurovent)	Охлаждение	Номинал ьный	кВт	142	155	168	177	186	195
Ступени регули	рования		%	6	6	6	6	6	6
BXOДНАЯ MOЩНОСТЬ (Eurovent)	Охлаждение		кВт	39.1	42.8	46.5	48.6	50.7	52.8
Корпус	Цвет				(Слоновая кость / ко	д Манселла 5Ү7.5/	1	
	Материал					Сталь с полиэф	ирной покраской		
Размеры	Блок	Высота	ММ	1800	1800	1800	1800	1800	1800
		Ширина	ММ	600	600	600	600	600	600
		Глубина	ММ	1200	1200	1200	1200	1200	1200
Bec	Bec		КГ	920	940	960	974	988	1002
Водяной	Тип					Паяная і	пластина		
теплообменник Испаритель	Минимальный воды в системе		Л	205	205	268	268	268	311
	Расход воды	Мин.	л/мин	204	222	241	254	267	280
		Номинал ьный	л/мин	407	444	482	507	533	559
		Макс.	л/мин	814	889	963	1015	1066	1118
	Материал изол	яции	•		•	Пенопол	потилен		•
1	Модель	Количеств	10	2	2	2	2	2	2

3-1 TEXH XAPAKTE	ИЧЕСКИЕ РИСТИКИ			145kw (52hp)	155kw (56hp)	165kw (60hp)	175kw (64hp)	185kw (68hp)	195kw (72hp)
Водяной	Тип					Паяная і	ластина		
теплообменник	Расход воды	Мин.	л/мин	260	283	307	323	339	355
Конденсатор		Номинал ьный	л/мин	519	567	614	647	679	711
		Макс.	л/мин	1038	1133	1229	1293	1357	1422
	Модель	Количеств	80	2	2	2	2	2	2
Компрессор	Тип	•				ерметичный спира	альный компрессо	p	
	Тип масла хлад	дагента				Daphne	FVC68D		
	Объем масла х	ладагента	Л	2.7	2.7	2.7	2.7	2.7	2.7
			Л	2.7	2.7	2.7	2.7	2.7	2.7
			Л	2.7	2.7	2.7	2.7	2.7	2.7
			Л	2.7	2.7	2.7	2.7	2.7	2.7
			Л	2.7	2.7	2.7	2.7	2.7	2.7
			Л	2.7	2.7	2.7	2.7	2.7	2.7
	Модель	Количеств	10	4	4	6	4	4	6
		Модель		JT212DA-YE	JT300DA-YE	JT300DA-YE	JT300DA-YE	JT335DA-YE	JT335DA-YE
		Скорость	об/мин	2900	2900	2900	2900	2900	2900
		Количеств	10	2	2		2	2	
		Модель		JT300DA-YE	JT212DA-YE	-	JT335DA-YE	JT300DA-YE	-
		Скорость	об/мин	2900	2900		2900	2900	
Уровень шума	Уровень звуковой мощности	Охлажде ние	дБ(А)	73	73	73	76	78	79
Контур	Тип хладагента	<u> </u>	<u> </u>			<u>R</u> .⊿	07C		
охлаждения	Объем хладагента		КГ	13.8	13.8	13.8	14.8	15.8	16.8
	Количество кон		141	6	6	6	6	6	6
	Регулирование			Ů	l.	мостатический ра	, and the second		Ŭ
Подсоединение	Вход/выход во				10	3 x 2 x F		nun	
труб	Слив воды исп		711 (31)/1			Местная			
	Вход/выход во	•	исатора			3 x 2 x F			
	Вход/выход во	ды из кондо	псатора			Местная			
Примечания					Мошност	для диапазона о	,	0t = 2~5°C	
T Iprimo Idilirizi				Вуолная мошн				ссор + цепь управл	TEHNE + HACOCPI
								x (1/60000) in m ³ /s	
					блицы (kW)/ Dt = Г		атуры охлажденно	й воды в пределах	
				Насосы вместе с	блоком не поставл	яются, поэтому доб	бавленная входная	мощность насосов	з рассчитывается
				, , ,	, , , , д	авления по кривым	падения давлени	<u>′</u>	. ,
				В контур воды	•	одимо включить се протока. Мин. объе		стороне испарите. нальных условиях	ля необходимо
				Номинальные мо	щности охлаждени		дующих условиях: I /35°C	Испаритель: 12°С/7	7°С; конденсатор:
				Уровень звуковой м	ощности является а	бсолютной величиної	й, указывающей "моц	цность", производиму	ю источником звука
					Данные об уро	вне шума относятс	я к номинальному	режиму работы	
					дБА = А-взвешен	ный уровень шума	при работе (шкал	а А согласно ІЕС)	
					Эт	алонное звуковое д	давление 0 дБ = 1	pW	

3-2 ЭЛЕКТ ХАРАКТЕРИ	ГРИЧЕСКИЕ ІСТИКИ			EWWP014KAW1N	EWWP022KAW1N	EWWP028KAW1N	EWWP035KAW1N	EWWP045KAW1N	EWWP055KAW1N
Электропитание	Наименование					W	/1		
	Фаза					31	V~		
	Частота		Гц	50	50	50	50	50	50
	Напряжение		В	400	400	400	400	400	400
	Допустимое отклонение	Минимал ьный	%			-10	0%		
	напряжения	Максима льный	%			+10	0%		

3-2 ЭЛЕК ХАРАКТЕР	ТРИЧЕСКИЕ ИСТИКИ		EWWP014KAW1N	EWWP022KAW1N	EWWP028KAW1N	EWWP035KAW1N	EWWP045KAW1N	EWWP055KAW1N
Блок	Пусковой ток	Α	49	79	109	129	93	127
	Номинальный рабочий ток в режиме охлаждения	Α	6.6	10.4	13.1	15.0	20.8	26.2
	Максимальный рабочий ток	Α	9	14.5	18.5	22	28	36
	Рекомендуемые плавкие предохранители в соответи стандартом IEC 269-2	ствии со	3x16aM	3x20aM	3x25aM	3x25aM	3x35aM	3x40aM
Компрессор	Фаза				3	}~		
	Напряжение	В	400	400	400	400	400	400
	Пусковой ток (плавный запуск)	Α	49	79	109	129	79	109
	Номинальный рабочий ток (RLA)	Α	6.6	10.4	13.1	15.0	10.4	13.1
	Максимальный рабочий ток	Α	9	14.5	18.5	22	14	18
	Метод запуска				Пря	ІМОЙ		

	(ТРИЧЕСК РИСТИКИ	ИЕ		EWWP065KAW1N	90kw (32hp)	100kw (36hp)	110kw (40hp)	120kw (44hp)	130kw (48hp)
Электропитание	Наименование)				W	11		
	Фаза					3N	\~		
	Частота		Гц	50	50	50	50	50	50
	Напряжение		В	400	400	400	400	400	400
	Допустимое отклонение	Минимал ьный	%			-10)%		
	напряжения	Максима льный	%			+1(0%		
- Блок	Пусковой ток	•	Α	149	121	155	163	185	189
	Номинальный ток в режиме с	•	Α	30	41.6	47	52.4	56.2	60
	Максимальный ток	й рабочий	Α	40	56	64	72	76	80
	Рекомендуемь предохраните стандартом IE	пи в соответ	ствии со	3x50aM	3x63aM	3x63aM	3x80aM	3x80aM	3x80aM
Сомпрессор	Фаза					3	~		
	Напряжение		В	400	400	400	400	400	400
	Пусковой ток (запуск)	плавный	Α	129	79	79	109	109	129
	Номинальный ток (RLA)	рабочий	Α	15.0	10.4	10.4	13.1	13.1	15
	Максимальный ток	й рабочий	Α	20	14	14	18	18	20
	Метод запуска		•			Пря	мой		
	Фаза					3~		3~	
	Напряжение		В			400		400	
	Пусковой ток (запуск)	плавный	Α	-		109		129	
	Номинальный ток (RLA)	рабочий	Α	-		13.1	-	15	-
	Максимальный ток	й рабочий	А	1		18		20	
	Метод запуска	l		1		Прямой		Прямой	

	КТРИЧЕСКІ РИСТИКИ	ΛE		44-1 4-21)	40-1 (00)	4		44-11 (7-41)
	1			145kw (52hp)	155kw (56hp)	165kw (60hp)	175kw (64hp)	185kw (68hp)	195kw (72hp)
Электропитание	Наименование						√· √~		
	Фаза Частота		Гц	50	50	50	√~ 50	50	50
			В	400	400	400	400	400	400
	Напряжение	M	%	400	400	4 00 -10		400	400
	Допустимое отклонение	Минимал ьный							
	напряжения	Максима льный	%			+10	0%		
Блок	Пусковой ток		Α	183	191	199	221	225	229
	Номинальный р		Α	67.8	73.2	78.6	82.4	86.2	90
	Максимальный ток	рабочий	Α	92	100	108	112	116	120
	Рекомендуемы предохранител стандартом IEC	и в соответ	ствии со	3x100aM	3x100aM	3x125aM	3x125aM	3x125aM	3x125aM
Компрессор	Фаза					3	~		
	Напряжение		В	400	400	400	400	400	400
	Пусковой ток (г запуск)	тлавный	Α	79	79	109	109	109	129
	Номинальный р ток (RLA)	рабочий	Α	10.4	10.4	13.1	13.1	13.1	15
	Максимальный ток	рабочий	Α	14	14	18	18	18	20
	Метод запуска				•	Пря	мой		
	Фаза			3~	3~		3~	3~	
	Напряжение		В	400	400	1	400	400	
	Пусковой ток (г запуск)	павный Павный	А	109	109		129	129	
	Номинальный р ток (RLA)	рабочий	A	13.1	13.1	-	15	15	-
	Максимальный ток	рабочий	А	18	18		20	20	
	Метод запуска			Прямой	Прямой	1	Прямой	Прямой	

4 Дополнительные функции

Кол-во	Описание дополнительных функций				Типоразмер				
		014WC 012RC	022WC 020RC	028WC 026RC	035WC 030RC	045WC 040RC	055WC 055RC	065WC 065RC	Наличие
	Стандартный блок	0	0	0	0	0	0	0	
	Не полностью сочетаемые дополнительные функции								
Н	Использование гликоля, температура охлажденной воды до -5°С	0	0	0	0	0	0	0	Заводской монтаж
77	Использование гликоля, температура охлажденной воды до -10°С	0	0	0	0	0	0	0	Заводской монтаж
	Поставляемый комплект								
EKBMSMBA	Межсетевой интерфейс BMS Modbus / протокол J-bus	0	0	0	0	0	0	0	Комплект
EKBMSBNA	Протокол BACnet межсетевого интерфейса BMS	0	0	0	0	0	0	0	Комплект
EKAC10B	Карта ВМS	0	0	0	0	0	0	0	Комплект
ekrumc	Пулът дистанционного управления	0	0	0	0	0	0	0	Комплект
EKLS1	Низкий уровень шума при работе EWWP014K4W1N / EWIP012K4W1N	01	1	I	I	1	I	-	Комплект
EKLS2	Низкий уровень шума при работе EWWP022K4W1N / EWIP020-065KAW1N	I	0	0	0	02	02	02	Комплект
EHIMC10AV1010/1080	Гидравлический блок	0	0	I	ı	1	I	1	Комплект
EHMC15AV1010/1080	Гидравлический блок	I	1	0	0	I	I	1	Комплект
EHIMC30AV1010/1080	Гидравлический блок	I	I	I	I	0	0	0	Комплект
ПРИМЕ	ПРИМЕЧАНИЯ	0E03H/	ОБОЗНАЧЕНИЯ						4TW55259-1D
* = Ном. - Для ус EKRUM EKAC10	* = Номер дополнительной функции - Для установки EKBMSMBA, EKBMSBNA и EKRUMC => на блок требуется установить - Схастов.	std = стан Имеется Поставля Не имеет Заштрихс	std = стандартный на блоке Имеется Поставляется, для блока эт Не имеется в наличии Заштрихованная область - г	std = стандартный на блоке Имеется Поставляется, для блока этого размера требуется х Не имеется в наличии Заштрихованная область - предварительные данные	мера требует оительные да	ся × нные			

Кол-во	Описание дополнительных функции					
			І ипоразмер			
		045 W1	055 W1	065 W1	Наличие	DT
	Стандартный блок	0	0	0		
	Не полностью сочетаемые дополнительные функции					
Н	Использование гликоля, температура охлажденной воды до -5°C	0	0	0	Заводской монтаж	S
72	Использование гликоля, температура охлажденной воды до -10°C	0	0	0	Заводской монтаж	S
	Поставляемый комплект					
EKBMSMBA	Межсетевой интерфейс BMS Modbus / протокол J-bus	0	0	0	Комплект	S
EKBMSBNA	Протокол ВАСлет межсетевого интерфейса BMS	0	0	0	Комплект	S
EKAC10B	Карта ВМЅ	0	0	0	Комплект	S
EKRUMC	Пульт дистанционного управления	0	0	0	Комплект	S
EKLS1	Низкий уровень шума при работе ЕММР014КАW1N / ЕМГР012КАW1N	_	I	I	Комплект	S
EKLSZ	Низкий уровень шума при работе ЕММР022КАW1N / ЕМГР020-065КАW1N	02	02	02	Комплект	S
EHIMC10AV1010/1080	Гидравлический блок	ı	ı	I	Комплект	S
EHIMC15AV1010/1080	Гидравлический блок	_	I	I	Комплект	S
EHMC30AV1010/1080	Гидравлический блок	0	0	0	Комплект	S
търчительной функции * = Номер дополнительной функции - Для установки ЕКВМЅМВА, ЕКВМЅВN EKRUMC => на блок требуется уста EKAC10B. Оуществующие дополнительные ф EWWP045-065КАW1M (x1) + ECB1MUV EWWP045-065КАW1M (x1) + ECB3MUV	DEO3HAЧЕНИЯ ENOME HAINR Std = стандартный на блоке	ра въргания в в в в в в в в в в в в в в в в в в в				4TW53449-4B

5 Системы управления

Интерфейс пользователя EWWP014-065KAW1N

Цифровой пульт управления состоит из цифрового дисплея, четырех кнопок с обозначениями, а также четырех СИД, дающих дополнительную информацию для пользователя.

Цифровой пульт управления

Кнопки на пульте управления.

Каждая кнопка, за исключением нижней левой кнопки, обеспечивает сочетание двух функций: № / № / ▼. Функция,

выполняемая при нажатии пользователем этих кнопок, зависит от состояния пульта управления и блока в конкретный момент времени.

PRG

Кнопка, для прокручивания списка параметров пользователя, для подтверждения модификации параметров и возврата в нормальный режим работы.

Кнопка, для деактивации звуковой сигнализации при поступления аварийного сигнала.

Кнопка, для прокручивания списка основных параметров или параметров пользователя, или для увеличения заданного значения.

Кнопка, для пуска блока в режиме обогрева или для выключения блока, когда режим обогрева является активным.

Кнопка, для прокручивания списка основных параметров, для перехода от кода параметров к его значению.

Кнопка, для пуска блока в режиме охлаждения или для выключения блока, когда режим охлаждения является активным.

Кнопка, для прокручивания списка основных параметров или параметров пользователя, или для уменьшения заданного значения.

СИД на пульте управления:

СИД показывает состояние компрессора. СИД не горит, если компрессор не является активным, мигает, если компрессор не может быть запущен, хотя запрошена дополнительная нагрузка (например, таймер активен), и горит постоянно, если компрессор активен.

СИД показывает, что активен режим обогрева.

СИД показывает, что активен режим охлаждения.

СИД показывает, что значение цифрового вывода нужно умножить на 100.

Примечание:

- Допуск показания температуры: ±1°С.
- Разборчивость числовых данных при выводе может уменьшаться при действии прямых солнечных лучей.

5 Системы управления

Интерфейс пользователя 90kW (32hp) - 195kW (72hp)

Цифровой пульт управления

Цифровой пульт управления состоит из алфавитноцифрового дисплея, четырех кнопок с обозначениями, а также ряда СИД.

Рис. - Встроенный цифровой пульт управления

Кнопка, для входа в главное меню.

Кнопка, для пуска или останова блока.

Кнопка, для входа в меню средств безопасности или для сброса сигнализации.

Кнопка, для подтверждения выбора или заданного значения.

Примечание:

- Допуск показания температуры: ±1°С.
- Разборчивость алфавитно-цифровых данных при выводе может уменьшаться при действии прямых солнечных лучей.

5

6 - 1 Таблицы мощности охлаждение/обогрев

LW	IC		20			25			30			35			40			45			50			55	
	<u> </u>																								
LWE	МОМ	CC	НС	PI	СС	НС	PI	CC	НС	PI															
-10	014	8,0	10,8	2,75	7,5	10,5	2,95	7,0	10,2	3,20	6,4	9,9	3,49	5,7	9,6	3,82	5,0	9,2	4,19		-			-	-
	022	12,4	16,0	3,55	12,2	16,2	4,02	11,5	16,1	4,53	10,7	15,8	5,08	9,8	15,4	5,66	8,7	15,0	6,29	,			-	-	-
	028	16,4	21,6	5,18	16,4	22,2	5,80	16,1	22,6	6,50	15,3	22,6	7,29	14,3	22,4	8,17	12,9	22,1	9,14	-			-	-	-
	035	20,9	27,0	6,12	20,8	27,4	6,69	20,6	28,0	7,41	19,7	28,0	8,27	18,2	27,5	9,29	16,3	26,7	10,47	,	-		1	-	-
-5	014	9,9	12,7	2,75	9,4	12,4	2,97	8,9	12,1	3,23	8,3	11,8	3,56	7,6	11,5	3,87	6,9	11,2	4,25	6,2	10,9	4,63	-	-	-
	022	15,9	19,7	3,77	15,4	19,6	4,25	14,7	19,5	4,77	13,9	19,2	5,34	12,9	18,9	5,95	11,8	18,4	6,61	10,5	17,8	7,31	-		-
	028	20,1	25,4	5,35	20,1	26,0	5,94	19,8	26,4	6,62	18,9	26,3	7,40	18,1	26,4	8,26	16,8	26,0	9,22	15,4	25,6	10,28	-	-	
	035	24,4	30,6	6,25	24,3	31,1	6,84	24,1	31,7	7,56	23,3	31,8	8,42	22,0	31,5	9,42	20,2	30,9	10,61	18,0	29,8	11,81	-	-	
0	014	11,9	14,7	2,77	11,4	14,4	3,00	10,9	14,2	3,27	10,3	13,9	3,60	9,7	13,6	3,94	8,9	13,3	4,33	8,1	12,9	4,73	7,3	12,5	5,23
	022	18,8	22,8	4,01	18,3	22,8	4,46	17,6	22,5	4,97	16,8	22,4	5,55	15,8	22,0	6,18	14,7	21,5	6,88	13,4	21,0	7,64	12,1	20,5	8,45
	028	23,7	29,2	5,46	23,7	29,7	5,99	23,4	30,1	6,63	22,6	30,0	7,37	21,9	30,1	8,21	20,6	29,8	9,14	19,2	29,4	10,18	17,2	28,5	11,31
	035	27,9	34,2	6,22	27,8	34,7	6,87	27,7	35,3	7,62	26,9	35,4	8,49	25,7	35,2	9,47	24,1	34,9	10,74	22,0	33,8	11,75	19,5	32,7	13,17
4	014	13,1	15,8	2,73	12,9	15,9	2,99	12,5	15,8	3,28	12,0	15,7	3,63	11,4	15,4	3,97	10,7	15,1	4,37	10,0	14,8	4,79	9,1	14,4	5,29
	022	20,8	24,9	4,07	20,6	25,1	4,55	20,2	25,3	5,08	19,8	25,5	5,67	18,8	25,1	6,31	17,7	24,7	7,01	16,4	24,1	7,76	14,6	23,2	8,56
	028	26,7	32,2	5,51	26,7	32,7	6,05	26,4	33,1	6,70	25,7	33,2	7,49	24,9	33,2	8,29	23,7	32,9	9,22	22,2	32,5	10,24	20,3	31,8	11,47
	035	30,8	37,2	6,44	30,7	37,8	7,09	30,6	38,4	7,85	30,0	38,7	8,71	28,9	38,6	9,71	27,5	38,3	10,80	25,6	37,6	12,00	23,4	36,7	13,27
7	014	14,3	17,1	2,76	14,0	17,0	3,00	13,5	16,8	3,29	13,0	16,6	3,61	12,3	16,3	3,98	11,6	16,0	4,37	10,9	15,7	4,84	10,1	15,4	5,33
	022	22,7	26,9	4,24	22,5	27,2	4,66	22,2	27,4	5,17	21,5	27,3	5,79	20,5	26,9	6,35	19,2	26,2	7,00	17,6	25,4	7,75	15,6	24,3	8,69
	028	28,9	34,5	5,56	28,9	35,0	6,11	28,6	35,4	6,76	28,0	35,4	7,48	27,1	35,5	8,35	26,0	35,2	9,25	24,5	34,8	10,32	22,6	34,1	11,45
	035	33,1	39,6	6,52	33,0	40,2	7,19	33,0	40,9	7,95	32,5	41,2	8,75	31,5	41,3	9,81	30,1	41,0	10,90	28,1	40,2	12,12	25,7	39,0	13,33
10	014	15,5	18,2	2,76	15,1	18,1	3,03	14,8	18,1	3,33	14,3	17,9	3,64	13,7	17,8	4,05	13,0	17,5	4,46	12,2	17,2	4,92	11,2	16,6	5,35
	022	24,6	28,8	4,22	24,4	29,1	4,67	24,0	29,2	5,19	23,3	29,1	5,78	22,3	28,8	6,40	21,1	28,2	7,10	19,5	27,3	7,85	17,6	26,3	8,69
	028	30,4	35,9	5,56	30,3	36,4	6,12	30,1	36,9	6,78	29,6	37,2	7,53	29,0	37,3	8,36	27,9	37,2	9,30	26,6	36,9	10,32	24,9	36,3	11,47
	035	34,5	41,1	6,61	34,4	41,7	7,29	34,3	42,3	8,05	33,7	42,6	8,90	32,8	42,7	9,89	31,4	42,4	10,97	29,6	41,8	12,14	27,5	40,9	13,37
14	014	16,2	19,0	2,75	16,2	19,2	3,06	16,2	19,6	3,38	16,0	19,7	3,67	15,6	19,7	4,12	14,9	19,5	4,55	14,0	19,0	5,02	12,8	18,2	5,37
	022	26,4	30,6	4,20	26,3	31,0	4,68	26,2	31,4	5,21	25,7	31,5	5,75	24,8	31,3	6,46	23,6	30,8	7,19	22,0	30,0	7,98	20,2	28,9	8,68
	028	32,3	37,8	5,56	32,2	38,3	6,13	32,2	38,9	6,78	31,9	39,5	7,55	31,4	39,8	8,37	30,6	39,9	9,29	29,4	39,8	10,31	27,9	39,4	11,49
	035	38,4	45,0	6,67	38,3	45,7	7,35	38,0	46,1	8,12	37,4	46,4	9,00	36,5	46,4	9,94	35,2	46,2	10,98	33,7	45,8	12,11	31,0	44,4	13,36
16	014	16,7	19,5	2,74	16,7	19,8	3,06	16,7	20,0	3,38	16,5	20,2	3,68	16,2	20,3	4,13	15,6	20,2	4,55	14,8	19,8	5,01	13,7	19,0	5,37
	022	27,2	31,4	4,19	27,1	31,8	4,67	27,0	32,2	5,20	26,6	32,4	5,74	25,8	32,3	6,45	24,7	31,9	7,17	23,2	31,2	7,96	21,5	30,1	8,68
	028	32,6	38,2	5,57	32,6	38,7	6,15	32,5	39,3	6,82	32,3	39,9	7,58	31,9	40,3	8,41	31,2	40,5	9,34	30,2	40,6	10,36	28,9	40,4	11,49
	035	38,8	45,5	6,70	38,7	46,1	7,39	38,5	46,7	8,17	38,1	47,1	9,06	37,3	47,3	9,99	36,1	47,2	11,03	34,7	46,8	12,16	32,9	46,4	13,43
20	014	17,6	20,3	2,73	17,6	20,6	3,05	17,5	20,9	3,38	17,5	21,2	3,69	17,4	21,5	4,12	17,0	21,5	4,54	16,3	21,3	4,99	15,4	20,7	5,36
	022	28,9	33,0	4,16	28,8	33,4	4,64	28,7	33,9	5,17	28,5	34,2	5,71	28,0	34,4	6,41	27,0	34,2	7,13	25,8	33,7	7,92	24,0	32,6	8,67
	028	33,2	38,8	5,58	33,2	39,4	6,19	33,1	40,0	6,88	33,1	40,8	7,63	32,9	41,4	8,49	32,4	41,9	9,42	31,8	42,2	10,44	31,0	42,5	11,50
	035	40,9	47,6	6,67	40,8	48,2	7,38	40,8	49,0	8,17	40,7	49,8	9,09	40,7	50,7	9,98	40,6	51,6	11,02	39,2	51,3	12,14	37,4	50,9	13,49
																									7102 1

4TW57192-1

ОБОЗНАЧЕНИЯ

СС : Мощность охлаждения (kW) НС : Мощность обогрева (kW) РІ : Входная мощность (kW)

LWE : Температура воды испарителя на выходе (°C) LWC : Температура воды на выходе конденсатора (°C)

ПРИМЕЧАНИЯ

Мощность охлаждения соответствует стандартным номинальным характеристикам Eurovent 6/C/003-2003 и действительна для диапазона температуры охлажденной воды $Dt=3-8^{\circ}C$.

Мощность обогрева соответствует стандартным номинальным характеристикам Eurovent 6/C/003-2003 и действительна для диапазона температуры охлажденной воды Dt = 3-8°C.

Входная мощность является общей входной мощностью в соответствии со стандартными номинальными характеристиками Eurovent 6/C/003-2003.

6 - 1 Таблицы мощности охлаждение/обогрев

LW	IC		20			25			30			35			40			45			50			55	
	модель																								
LWE	MO	CC	НС	PI	CC	НС	PI	CC	НС	PI	CC	НС	PI	CC	НС	PI	CC	НС	PI	CC	НС	PI	CC	НС	PI
-10																					<u> </u>				
	045	24,8	32,2	7,5	24,3	32,7	8,5	23,0	32,4	9,5	21,4	31,9	10,6	19,5	31,1	11,7	17,3	30,2	13,0	<u> </u>	<u> </u>	-	-	-	
	055	32,9	43,5	10,8	32,9	44,8	12,1	32,2	45,5	13,5	30,7	45,5	15,1	28,6	45,2	16,8	25,9	44,5	18,8	<u> </u>	<u> </u>	-	-	-	-
	065	41,9	54,2	12,3	41,5	55,0	13,5	41,2	55,9	14,9	39,4	55,8	16,6	36,5	55,0	18,7	32,5	53,3	21,0	-	-	-	-	-	-
-5																									
	045	31,8	39,7	8,0	30,6	39,5	8,9	29,4	39,2	10,0	27,7	38,7	11,1	25,7	38,0	12,3	23,5	37,1	13,6	20,9	35,9	15,0	-	-	-
	055	40,2	51,2	11,2	40,2	52,4	12,4	39,7	53,2	13,7	37,8	52,9	15,3	36,3	53,2	17,0	33,7	52,5	18,9	30,8	51,7	21,0	-	-	
	065	48,7	61,4	12,6	48,6	62,4	13,8	48,3	63,4	15,2	46,7	63,5	16,9	44,1	62,8	18,9	40,5	61,6	21,3	36,0	59,4	23,7	-	-	-
0																									
		37,4		8,4	36,5	45,8	9,3	35,1	45,4	10,4	33,6	45,1	11,5	31,5	44,3	12,8	29,2	43,4	14,2	26,7	42,3	15,7	24,1	41,4	17,3
		47,5		11,4	47,5	59,8	12,5	46,9	60,5	13,7	45,3	60,4	15,2	43,8	60,6	16,9	41,3	60,0	18,8	38,5	59,2	20,8	34,4	57,4	23,1
	065	55,9	68,6	12,5	55,6	69,5	13,8	55,4	70,7	15,3	53,9	70,9	17,1	51,5	70,4	19,0	48,2	69,6	21,6	44,1	67,4	23,6	39,0	65,2	26,4
4																				<u> </u>					
	045	43,6	51,9	8,3	42,5	51,8	9,3	41,1	51,5	10,3	39,5	51,1	11,5	37,5	50,3	12,8	35,2	49,5	14,2	32,7	48,4	15,7	30,1	47,4	17,3
	055	_		11,5	53,5	66,0	12,6	52,8	66,6	13,9	51,5	66,9	15,5	49,8	66,8	17,1	47,5	66,3	18,9	44,5	65,4	21,0	40,7	64,0	23,4
	065	61,6	74,9	13,0	61,5	76,0	14,3	61,1	77,0	15,8	59,9	77,5	17,5	57,9	77,4	19,5	55,0	76,6	21,7	51,3	75,2	24,1	46,9	73,3	26,6
7									-							i									
	045			8,6	45,9		9,5	44,7	55,3	10,5	43,0	54,8	11,8	40,9	53,9	12,9	38,3	52,5	14,2	35,1	50,8	15,7	31,1	48,7	17,5
	055			11,6		70,5	12,7	57,3		14,0	56,0	71,4	15,5		71,5	17,2	52,0	71,0	18,9	49,1	70,2	21,1	45,3	68,6	23,3
	065	66,2	79,4	13,1	66,1	80,5	14,5	65,9	82,0	16,0	65,0	82,7	17,6	63,1	82,8	19,7	60,2	82,0	21,8	56,3	80,4	24,3	51,3	77,9	26,8
10																									
	045			8,6					58,5		46,6		11,7						14,4			15,9	35,1	52,7	17,6
	055			11,6		73,4	12,7	60,3		14,0	59,4	74,8	15,5		75,2	17,2	56,0		19,1	<u> </u>			49,8		23,4
	065	69,0	84,1	13,3	68,9	85,2	14,7	68,5	86,5	16,2	67,5	87,1	17,9	65,5	87,1	19,9	62,8	86,5	22,0	59,3	85,2	24,4	55,0	83,3	26,8
14	045				_															<u> </u>	<u> </u>				-
	045			8,6			9,5				51,3	63,1	11,7				47,1		14,5		60,1		40,3		
	055 065	64,7 76,8	├	11,6		77,2 91,6	12,7	64,4	78,4 92,4	14,0	63,9	79,4	15,6		80,1	17,2	61,3		19,1		80,0		55,8		23,5
16	000	70,8	30,3	13,4	70,7	91,0	14,8	76,0	32,4	16,3	74,9	93,0	18,1	72,9	92,8	20,0	70,5	92,4	22,1	67,4	91,6	24,3	64,0	90,6	26,8
10	045	542	62.9	0.5	540	63,8	0.5	540	64.6	10.6	52.0	64.0	44.0	54.0	04.7	40.4	40.4		445	10.4		40.4	40.0		
	055							54,0								13,1				46,4		16,1			
		65,3 77,7	1	11,6 13,5		77,9 94,2	12,8 14,8	65,1 77,0		14,1 16,4	64,7 76,2	80,3 96,1	15,6 18,2	63,9 74,5	_	17,3 20,0	62,5		19,2				57,9 65.9	-	
20	-	,,,,	55,5	10,0	77,0	07,2	, 4,0	,,,,	55,2	10,4	70,2	50,1	10,2	74,0	30,3	20,0	72,3	96,1	22,1	69,3	95,3	24,4	65,9	94,4	26,9
	045	57,6	66,2	8,5	57,5	67,0	9,5	57,4	68,0	10,5	56,9	68,5	11,6	55,8	68,9	13,0	54,0	68.5	14.4	51.4	67 F	16.0	47.0	GE A	17.5
	055	66,6		11,6			12,9	66,4	80,5	14,2	66,4	82,0	15,7	65,9	83,3	17,5	65,0	68,5 84,2	14,4						
	065			13,4		99,5	14,8	84,2	101	16,4	84,0	102	18,3	83,0	103	20,1	81,2	103		78,4			62,1 74.9	85,4 102	23,5
<u></u>	555	04,5	30,2	15,4	04,4	33,3	14,0	04,2	101	10,4	04,0	102	10,3	03,0	103	20,1	01,2	103	22,1	10,4	103	24,4	74,9	102	27,1

4TW57232-1

ОБОЗНАЧЕНИЯ

СС : Мощность охлаждения (kW)НС : Мощность обогрева (kW)РІ : Входная мощность (kW)

LWE : Температура воды испарителя на выходе (°C) LWC : Температура воды на выходе конденсатора (°C)

ПРИМЕЧАНИЯ

Мощность охлаждения соответствует стандартным номинальным характеристикам Eurovent 6/C/003-2003 и действительна для диапазона температуры охлажденной воды Dt = 3-8°C.

Мощность обогрева соответствует стандартным номинальным характеристикам Eurovent 6/C/003-2003 и действительна для диапазона температуры охлажденной воды Dt = 3-8°C. Входная мощность является общей входной мощностью в

входная мощность является общей входной мощностью в соответствии со стандартными номинальными характеристиками Eurovent 6/C/003-2003.

6 - 1 Таблицы мощности охлаждение/обогрев

LW			20			25			30			35			40			45			50			55	
	модель						D.			ъ.			D.			D.			D.			D.			D.
	<u> </u>	CC	HC	PI	CC	HC	PI	CC	HC	PI	CC	НС	PI	CC	НС	PI	CC	HC	PI	CC	HC	PI	CC	HC	PI
-10																									
		24.8	32.2	7.52	24.3	32.7	8.45	23.0	32.4	9.47	21.4	31.9	10.56	19.5	31.1	11.74	17.3	30.2	13.00	-	-		-	-	
	20	32.9									30.7	45.5		28.6	45.2	16.83	25.9		18.76	-	-		-		
	24	41.9	54.2	12.33	41.5	55.0	13.48	41.2	55.9	14.91	39.4	55.8	16.65	36.5	55.0	18.68	32.5	53.3	21.0	-	-		-		
-5																									
	16	31.8	39.7	7.96	30.6	39.5	8.91	29.4	39.2	9.95	27.7	38.7	11.08	25.7	38.0	12.31	23.5	37.1	13.62	20.9	35.9	15.03	-	-	
	20	40.2	51.2	11.19	40.2	52.4	12.37	39.7	53.2	13.73	37.8	52.9	15.28	36.3	53.2	17.01	33.7	52.5	18.93	30.8	51.7	21.0	-	-	
	24	48.7	61.4	12.59	48.6	62.4	13.77	48.3	63.4	15.22	46.7	63.5	16.94	44.1	62.8	18.93	40.5	61.6	21.3	36.0	59.4	23.7	-	-	
0																									
	16	37.4	45.8	8.43	36.5	45.8	9.33	35.1	45.4	10.36	33.6	45.1	11.51	31.5	44.3	12.78	29.2	43.4	14.17	26.7	42.3	15.68	24.1	41.4	17.31
	20	47.5	58.7	11.39	47.5	59.8	12.47	46.9	60.5	13.75	45.3	60.4	15.23	43.8	60.6	16.90	41.3	60.0	18.77	38.5	59.2	20.8	34.4	57.4	23.1
	24	55.9	68.6	12.55	55.6	69.5	13.84	55.4	70.7	15.34	53.9	70.9	17.08	51.5	70.4	19.03	48.2	69.6	21.6	44.1	67.4	23.6	39.0	65.2	26.4
4																									
	16	43.6	51.9	8.31	42.5	51.8	9.27	41.1	51.5	10.3	39.5	51.1	11.5	37.5	50.3	12.8	35.2	49.5	14.2	32.7	48.4	15.7	30.1	47.4	17.3
	20	53.5	64.9	11.5	53.5	66.0	12.6	52.8	66.6	13.9	51.5	66.9	15.5	49.8	66.8	17.1	47.5	66.3	18.9	44.5	65.4	21.0	40.7	64.0	23.4
	24	61.6	74.9	13.0	61.5	76.0	14.3	61.1	77.0	15.8	59.9	77.5	17.5	57.9	77.4	19.5	55.0	76.6	21.7	51.3	75.2	24.1	46.9	73.3	26.6
7																									
	16	46.4	55.1	8.65	45.9	55.4	9.50	44.7	55.3	10.5	43.0	54.8	11.8	40.9	53.9	12.9	38.3	52.5	14.2	35.1	50.8	15.7	31.1	48.7	17.5
	20	57.9	69.4	11.6	57.9	70.5	12.7	57.3	71.2	14.0	56.0	71.4	15.5	54.4	71.5	17.2	52.0	71.0	18.9	49.1	70.2	21.1	45.3	68.6	23.3
	24	66.2	79.4	13.1	66.1	80.5	14.5	65.9	82.0	16.0	65.0	82.7	17.6	63.1	82.8	19.7	60.2	82.0	21.8	56.3	80.4	24.3	51.3	77.9	26.8
10	·																								
	16	49.1	57.8	8.62	48.7	58.3	9.5	47.9	58.5	10.6	46.6	58.3	11.7	44.6	57 <i>.</i> 6	13.0	42.0	56.5	14.4	38.9	54.8	15.9	35.1	52.7	17.6
	20	60.9	72.4	11.6	60.7	73.4	12.7	60.3	74.3	14.0	59.4	74.8	15.5	58.0	75.2	17.2	56.0	75.0	19.1	53.3	74.4	21.1	49.8	73.1	23.4
	24	69.0	84.1	13.3	68.9	85.2	14.7	68.5	86.5	16.2	67.5	87.1	17.9	65.5	87.1	19.9	62.8	86.5	22.0	59.3	85.2	24.4	55.0	83.3	26.8
14																									
	16	52.6	61.3	8.57	52.5	62.1	9.5	52.2	62.9	10.6	51.3	63.1	11.7	49.5	62.6	13.1	47.1	61.7	14.5	43.9	60.1	16.1	40.3	57.9	17.5
	20	64.7	76.2	11.6	64.5	77.2	12.7	64.4	78.4	14.0	63.9	79.4	15.6	62.9	80.1	17.2	61.3	80.3	19.1	59.0	80.0	21.1	55.8	79.2	23.5
	24	76.8	90.3	13.4	76.7	91.6	14.8	76.0	92.4	16.3	74.9	93.0	18.1	72.9	92.8	20.0	70.5	92.4	22.1	67.4	91.6	24.3	64.0	90.6	26.8
16																									
	16	54.3	62.9	8.55	54.2	63.8	9.5	54.0	64.6	10.6	53.2	64.9	11.6	51.6	64.7	13.1	49.4	63.9	14.5	46.4	62.6	16.1	42.8	60.4	17.5
	20	65.3	76.8	11.6	65.2	77.9	12.8	65.1	79.1	14.1	64.7	80.3	15.6	63.9	81.1	17.3	62.5	81.6	19.2	60.5	81.6	21.2	57.9	81.3	23.5
	24	77.7	93.0	13.5	77.5	94.2	14.8	77.0	95.2	16.4	76.2	96.1	18.2	74.5	96.3	20.0	72.3	96.1	22.1	69.3	95.3	24.4	65.9	94.4	26.9
20																									
	16	57 <i>.</i> 6	66.2	8.50	57.5	67.0	9.5	57.4	68.0	10.5	56.9	68.5	11.6	55.8	68.9	13.0	54.0	68.5	14.4	51.4	67.5	16.0	47 <i>.</i> 9	65.4	17.5
	20	66.6	78.1	11.6	66.5	79.3	12.9	66.4	80.5	14.2	66.4	82.0	15.7	65.9	83.3	17.5	65.0	84.2	19.3	63.7	84.9	21.3	62.1	85.4	23.5
	24	84.5	98.2	13.4	84.4	99.5	14.8	84.2	101	16.4	84.0	102	18.3	83.0	103	20.1	81.2	103	22.1	78.4	103	24.4	74.9	102	27.1
(Contractorium)	•	terrenensi i			American de la constanti	***************************************								ندسيند ن			·						47	W534	72-2C

ОБОЗНАЧЕНИЯ

СС : Мощность охлаждения (kW) НС : Мощность обогрева (kW) РІ : Входная мощность (kW)

LWE : Температура воды испарителя на выходе (°C)
LWC : Температура воды на выходе конденсатора (°C)

ПРИМЕЧАНИЯ

Мощность охлаждения соответствует стандартным номинальным характеристикам Eurovent 6/C/003-2003 и действительна для диапазона температуры охлажденной воды Dt = 3 - 8°C.

Мощность обогрева соответствует стандартным номинальным характеристикам Eurovent 6/C/003-2003 и действительна для диапазона температуры охлажденной воды Dt=3-8°C.

Входная мощность является общей входной мощностью в соответствии со стандартными номинальными характеристиками Eurovent 6/C/003-2003.

2

3

6 - 1 Таблицы мощности охлаждение/обогрев

LV	VC		20.0			25.0			30.0			35.0			40.0			45.0			50.0			55.0	
	МОДЕЛЬ																								
LWI	₽ D	CC	НС	PI	СС	НС	PI	СС	НС	PI	CC	НС	PI	CC	НС	PI	CC	НС	PI	CC	НС	PI	CC	НС	PI
-10	32	49,5	64,4	15,0	48,7	65,4	16,9	46,0	64,8	18,9	42,8	63,7	21,1	38,9	62,3	23,5	34,5	60,4	26,0	-		-	-	-	-
	36	57,6	75,7	18,4	57,3	77,5	20,5	55,2	77,8	23,0	52,1	77,4	25,6	48,1	76,4	28,6	43,2	74,7	31,8	-	-	-	-	-	
	40	65,7		21,7	65,9	89,6	24,2	64,4	90,9	27,0	61,4	91,1	30,1	57,2	90,5	33,7	51,9	89,0	37,5	-			-		
	44	74,7 83,7	97,7	23,2	74,5	99,8	25,6	73,4	101	28,4	70,1	101	31,7	65,1	100	35,5	58,4	97,8		·		-	·		
-5	32	63,6	108 79,4	24,7 15,9	83,0 61,3		27,0 17,8	82,3 58,7	-	29,8	78,7 55,4	112		73,0		37,4	65,0	107		- 44.7		-	-	-	
	36	72,0		19,2	70,9	91,9	21,3	69,0	- 1	19,9	65,5		22,2	51,4 62,1	76,0 91,1	24,6	47,0 57,2	74,1 89,5	27,2 32,6	41,7 51,7	71,7 87,5	30,1		-	
	40	80,4	102	22,4	80,5	105	24,7	79,3	106	27,5	75,6	106	30,6	72,7	106	34,0	67,4	105	37,9	61,6	103	42,1			
	44	88,9	113	23,8	88,8	115	26,1	88,0	117	28,9	84,5	116	32,2	80,4	116	35,9	74,2	114	40,3	66,8	111	44,8	-	-	_
	48	97,5	123	25,2	97,2	125	27,5	96,6	127	30,4	93,3	127	33,9	88,1	126	37,9	81,0	123	42,6	71,9	119	47,4	1	-	-
0	32	74,9	91,7	16,9	73,1	91,7	18,7	70,1	90,8	20,7	67,2	90,1	23,0	63,1	88,6	25,6	58,5	86,8	28,3	53,3	84,6	31,4	48,2	82,8	34,6
	36	85,0	105	19,8	84,0	106	21,8	82,0	106	24,1	78,9	105	26,7	75,4	105	29,7	70,6	103	32,9	65,2	102	36,5	58,5	98,8	40,4
	40	95,0	117	22,8	95,0	120	24,9	93.9	121	27,5	90,7	121	30,5	87,7	121	33,8	82,6	120	37,5	77,1	118	41,7	68,9	115	46,2
	44	103		23,9	103	129	26,3	102,3	131	29,1	99,2	131	32,3	95,3	131	35,9	89,5	130	40,4	82,6	127	44,4	73,4	123	49,5
<u> </u>	48	112		25,1	111		27,7	110,7	141	30,7	107,8	142	34,2	103,0	141	38,1	96,4	139	43,2	88,1	135	47,2	78,0		52,9
4	32	87,2		16,6	84,9	104	18,5	82,2	103	20,7	79,0	102	23,0	74,9	101	25,6	70,4	98,9	28,4	65,4	96,8	31,4	60,2		34,6
	40	97,1 107		19,8	95,9 107	118	21,9	93,9 106		24,2	91,0 103	118 134	27,0 30,9	87,3 99,7	117	29,9 34,1	82,7 94,9	116 133	33,1 37,8	77,2 89,0	114	36,7 41,9	70,8 81,4	1	46,8
	44	115		24,5	115		26,9	114		29,7	111	144	33,0	108	144	36,6	102	143	40,6	95,8	141	45,1	87.6	137	50,1
	48	123		25,9	123		28,6	122	154	31,6	120	155	35,0	116		39,0	110	153		102,6	150	48,2	93,8		53,3
7	32	92,9	110	17,3	91,7	111	19,0	89,5	111	21,0	86,0	110	23,6	81,9	108	25,7	76,6	105	28,4	70,2	102	31,4	62.3	97	35,1
	36	104	124	20,2	104	126	22,2	102	127	24,5	99,0	126	27,3	95,3	125	30,1	90,3	124	33,1	84,2	121	36,8	76,4	117	40,8
	40	116	139	23,2	116	141	25,4	115	142	28,0	112	143	31,0	109	143	34,4	104	142	37,8	98,2	140	42,3	90,6	137	46,6
	44	124		24,7	124	151	27,2	123	153	30,0	121	154	33,1	117	154	36,9	112	153	40,7	105	151	45,5	96,6	146	50,1
	48	132		26,3	132	161	29,0	132	164	32,0	130	165	35,2	126	166	39,4	120	164	43,6	113	161	48,7	103	156	53,5
10	32	98,2		17,2	97,4		19,0	95,9		21,1	93,1	117	23,5	89,2	115	26,0	84,1	113	28,7	77,8	110	31,8	70.1		35,1
	36 40	110 122		20,2	109 121		22,2	108		24,6	106		27,3	103	133	30,2	98,0	131	33,4	92,2	129	37,0	84,9	126	41,0
	44	130		24,9	130	147 159	27,4	121 129		28,1 30,2	119 127	150 162	31,1	116 124	150 162	34,4	112 119	150 161	38,1 41,1	107 113	149 160	42,3 45,5	99,6 105	146 156	46,8 50,2
	48	138		26,6	138		29,3	137		32,4	135		35,8	131		39,7	126	173		119	170	48,7	110		53,6
14	32	105	123	17,1	105	124	19,1	104	126	21,2	103	126	23,3	99,0	125	26,2	94,1	123	29,1	87,8	120	32,3	80,6	116	35,1
	36	117	137	20,2	117	139	22,3	117	141	24,6	115	142	27,2	112	143	30,3	108	142	33,6	103	140	37,2	96,1	137	41,0
	40	129	152	23,2	129	154	25,5	129	157	28,1	128	159	31,2	126	160	34,4	123	161	38,1	118	160	42 ,2	112	158	46,9
	44	141	167	25,0	141	169	27,5	140	171	30,4	139	172	33,7	136	173	37,2	132	173	41,1	126	172	45,4	120	170	50,3
	48	154	181	26,9	153	183	29,6	152	185	32,7	150	186	36,2	146	186	40,0	141	185	44,1	135	183	48,7	128	181	53,7
16	32	109		17,1	108		19,0	108		21,1	106	130	23,3	103	129	26,1	98,7	128	29,0	92,8	125	32,2	85,7	121	35,1
	36	120		20,2	119		22,3	119		24,7	118			116	146	30,4	112	146		107	144	37,3	101		41,0
	40	131		23,2	130		25,6	130		28,2	129			128		34,6	125	163		121	163	42,4	116		46,9
	48	143 155		25,1 26,9	143 155		27,6 29,7	142 154		30,5 32,8	141 152	176 192	33,8 36,4	138 149	177 193	37,3 40,1	135 145	178 192		130 139	177 191	45,6 48,8	124 132		50,4
20	32	115		17,0	115		18,9	115		21,0	114		23,2	112		26,0	108	137		103	135	32,0	95,7		35,0
	36	124		20,1	124	1	22,3	124		24,8	123			122		30,4	119	153		115	152	37,4	110	- :	41,0
	40	133	156	23,3	133	159	25,7	133	161	28,5	133	164	31,5	132	167	34,9	130	168	38,6	127	170	42,7	124		47,0
	44	151	176	25,1	151	179	27,7	151	181	30,7	150	184	34,0	149	186	37,5	146	188	41,5	142	188	45,7	137	187	50,6
L	48	169	196	26,9	169	199	29,7	168	201	32,9	168	205	36,6	166	206	40,1	162	207	44,3	157	205	48,8	150	203	54,2

4TW53472-3C

ОБОЗНАЧЕНИЯ

 CC
 : Мощность охлаждения (kW)

 HC
 : Мощность обогрева (kW)

 PI
 : Входная мощность (kW)

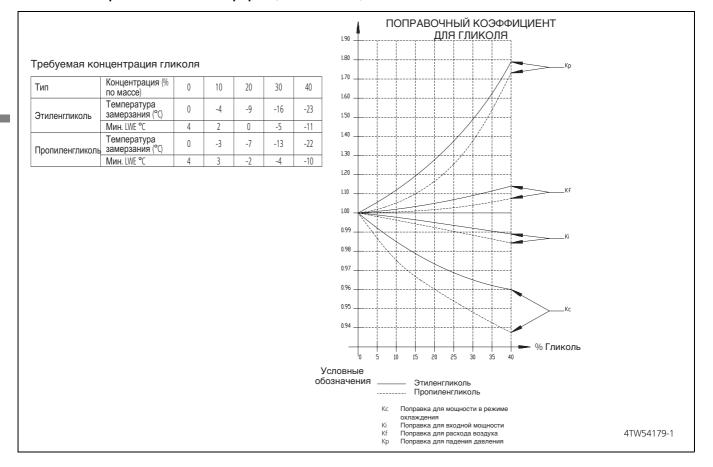
LWE : Температура воды испарителя на выходе (°C) LWC : Температура воды на выходе конденсатора (°C)

6 - 1 Таблицы мощности охлаждение/обогрев

LW	C		20			25			30			35			40			45			50			55	
	модель																								
LWE	_	CC	НС	PI	CC	НС	PI	CC	НС	PI	CC	НС	PI	CC	НС	PI	CC	НС	PI	CC	НС	PI	CC	НС	PI
-10	52 56	82,4	108	25,9	81,6	110	29,0	78,2	110	32,4	73,4	109	36,2	67,5	107	40,3	60,4	105	44,8					-	-
F	60	90,5 98,6	119	29,2 32,5	90,2 98,8	122 134	32,6 36,2	87,4 96,6	123 136	36,4 40,5	82,8 92,1	123	40,7 45,2	76,7 85,8	122 136	45,4 50,5	69,1 77,8	119	50,5 56,3					-	
	64	108	141	34,0	107	145	37,6	106	147	41,9	101	147	46,8	93,7	145		84,4	142	58,6	-	-	-	-	-	-
	68	117	152	35,5	116	155	39,0	115	157	43,3	109	157	48,4	102	155	54,2	91,0	151	60,8	-		-	-	-	
	72	126	163	37,0	125	165	40,4	123	168	44,7	118	168	49,9	109	165	56,0	97,6	160	63,1	-		-			-
-5	52 56	104	131	27,1	102	131	30,2	98	132	33,6	93	130	37,5	88	129		80,7	127	46,2	72,6	123	51,1		-	
 	60	112 121	142	30,3 33,6	111	144	33,6 37,1	109	146	37,4 41,2	103	145	41,7 45,8	98 109	144 159	46,3 51,0	90,9	142 157	51,5 56,8	82,5 92,5	139 155	57,1 63,1			
	64	129	164	35,0	129	167	38,5	128	170	42,7	122	169	47,5	117	169	53,0	108	167	59,2	97,6	163	65,8	_	-	
	68	138	174	36,4	137	177	39,9	136	180	44,2	131	180	49,2	124	179	54,9	115	176	61,6	103	171	68,5			
	72	146	184	37,8	146	187	41,3	145	190	45,7	140	190	50,8	132	189	56,8	121	185	64,0	108	178	71,2	-	-	-
1 0 }	52 56	122	150	28,3	121	151	31,1	117	151	34,5	112	151	38,2	107	149		100	147	47,1	91,8	144	52,2	82,6	140	57,7
1 1	60	132 143	163 176	31,2 34,2	132 143	165 180	34,3 37,4	129 141	166 182	37,9 41,2	124 136	166 181	42,0 45,7	119	166 182	46,6 50,7	112 124	163 180	51,7 56,3	104 116	161 178	57,4 62,5	93,0 103	156 172	63,5 69,3
	64	151		35,3	151	189	38,8	149	192	42,8	145	192	47,5	139	192	52,8	131	190	59,1	121	186	65,3	108	180	72,6
	68	159	196	36,5	159	199	40,2	158	202	44,4	153	202	49,4	147	201	55,0	138	199	61,9	127	194	68,0	112	188	76,0
-	72	168	206	37,6	167	209	41,5	166	212	46,0	162	213	51,2	154	211	57,1	145	209	64,7	132	202	70,8	117	195	79,3
4	52 56	141 151	169 182	28,1	138 149	169 184	31,1 34,4	135 147	170 185	34,6	131	169 185	38,5 42,4	125	167	42,7	118	165	47,3	110	162	52,3	101	159	58,0
1 1	60	160	195	34,5	160	198	37,8	159	200	38,1 41,7	143 155	201	46,4	137 150	184 200	46,9 51,2	130 142	182 199	52,0 56,8	122 134	179 196	57,6 62,9	112 122	176 192	64,1 70,2
	64	169	205	36,0	168	208	39,5	167	210	43,6	163	211	48,4	158	211	53,6	150	209	59,5	140	206	66,0	128	201	73,5
	68	177	215	37,4	176	218	41,2	175	221	45,5	171	222	50,5	166	222	56,1	157	220	62,3	147	216	69,2	134	211	76,7
	72	185		38,9	184	228	42,9	183	231	47,4	180	233	52,6	174	232	58,5	165	230	65,1	154	226	72,3	141	220	79,9
7	52 56	151 162	180 194	28,9	150 162	181	31,7	147	182	35,0	142	181	39,1	136	179	42,9	129	176	47.3	119	172	52,5	108	166	58,4
1	60	174		34,8	174	196 212	34,9	159 172	198	38,5 42,0	155 168	198	42,8 46,5	150 163	197 214	47,3 51,6	142 156	195 213	52,0 56,7	133 147	191 210	57,9 63,4	122 136	186 206	64,1 69,9
	64	182	218	36,3	182	222	39,9	181	225	44,0	177	228	48,6	172	226	54,1	164	224	59,6	154	221	66,6	142	215	73,3
	68	190	228	37,9	190	232	41.7	189	235	46,0	186	237	50,7	181	237	56,6	172	235	62,5	162	231	69,8	148	224	76,8
10	72	199		39,4	198	242	43,4	198	246	48,0	195	248	52,8	189	248	59,1	180	246	65,4	169	241	73,0	154	234	80,3
10	52 56	159 171	188 202	28,8	158 170	190 205	31,8 35,0	156 169	191 207	35,1 38,6	153 165	191	39,0 42,8	147 161	190 208	43,2 47,4	140 154	188 206	47,8 52,5	131 146	184 204	52,9 58,1	120 135	178 199	58,5 64,4
	60	183	217	34,8	182	220	38,2	181	223	42,1	178	225	46,6	174	226	51,6	168	225	57,2	160	223	63,4	149	219	70,3
1 [64	191	229	36,5	190	232	40,1	189	235	44,2	186	237	49,0	182	237	54,3	175	236	60,2	166	234	66,6	155	230	73,7
	68	199	241	38,2	198	244	42,0	197	247	46,4	194	249	51,3	189	249	56,9	182	248	63,1	172	245	69,9	160	240	77,1
14	72 52	207	252	39,9	207	256	44,0	206	259	48,5	202	261	53,6	197	261	59,6	188	259	66,0	178	256	73,1	165	250	80,5
' "	56	170 182	- :	28,7	170 182	201 216	31,8 35,0	169 181	204	35,2 38,7	167 179	206	38,9 42,8	162 175	205 223	43,4 47,5	155 170	204 222	48,2 52,7	147 162	200 220	53,4 58,3	136 152	195 216	58,5 64,4
	60	194	229	34,8	194	232	38,2	193	235	42,1	192	238	46,8	189	240	51,6	184	241	57,2	177	240	63,3	167	238	70,4
	64	206	243	36,6	206	246	40,2	205	249	44,4	203	252	49,3	199	253	54,4	193	253	60,2	185	252	66,5	176	249	73,7
	68	218		38,5	218	260		216	263	46,7	214	265	51,8	209	266		202	265	63,2	194	263		184	260	77,1
16	72 52	230 174		40,3 28,7	230 174	275 205		228 173	277	49,0 35,2	225 171	279	54,3 38,9	219 167	279 211	59,9 43,4	211 161	277	66,2 48,2	202	275	73,0	192	272	80,5
"	56	185		31,8	185	219		184	223	38,8	183	225	42,9	179	227	47,7	174	227	52,8	153 167	207 226	53,4 58,5	144 159	202 223	58,5 64,5
	60	196	231	34,8	196	234	38,3	195	237	42,3	194	241	46,9	192	243	51,9	187	245	57,5	182	245	63,6	174	244	70,4
	64	208	247	36,7	208	250	40,4	207	253	44,6	206	257	49,5	202	259	54,6	197	259	60,4	190	259	66,8	182	257	73,9
	68 72	221		38,6	220	266		219	269	46,9	217	272	52,0	213	274		207	274	63,4	199	272	70,0	190	270	77,4
20	52	233 182		40,4 28,6	232 182	283 213		231 181	286 216	49,2 35,3	228 180	288	54,6 38,9	224 178	289 221	60,1 43,4	217 173	288 221	66,4 48,2	208 167	286 220	73,2 53,4	198 158	283 216	80,8 58,5
	56	191	-	31,8	191			190	229	39,0	190	233	43,1	188	235		184	237	53,1	179	237	58,7	172	236	64,5
	60	200	234	34,9	200			199	242	42,7	199	246	47,2	198	250		195	253	58,0	191	255	64,0	186	256	70,4
	64	218		36,7	217		40,6	217	262	44,9	217	266	49,8	215	270	55,0	211	272	60,8	206	273	67,1	199	273	74,0
	68 72	236 253		38,5 40,3	235 253	278 298		235 253	282 302	47,1	234	287	52,3	232	290		227	291	63,6	220	290	70,1	212	289	77,6
		203	290	40,3	200	290	44,5	253	302	49,3	252	307	54,8	249	309	60,2	244	310	66,4	235	308	73,2	225	305	81,2 72-40

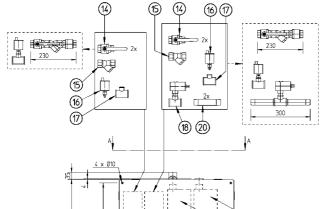
4TW53472-4C

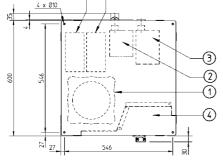
ОБОЗНАЧЕНИЯ

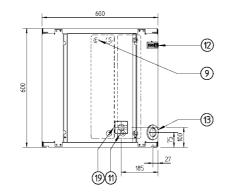

 СС
 : Мощность охлаждения (kW)

 НС
 : Мощность обогрева (kW)

 РІ
 : Входная мощность (kW)

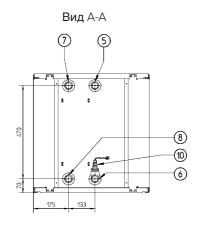

LWE : Температура воды испарителя на выходе (°C) LWC : Температура воды на выходе конденсатора (°C)


6 - 2 Поправочный коэффициент мощности



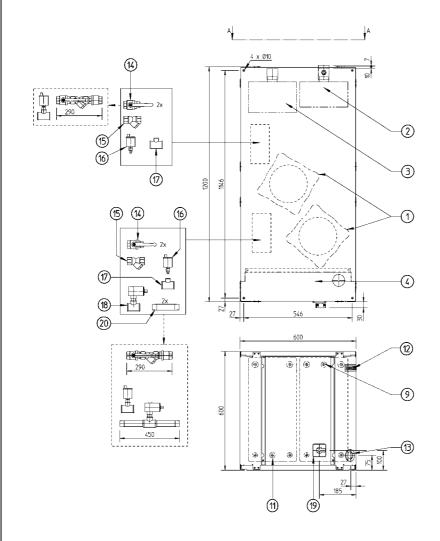
7 - 1 Чертеж в масштабе

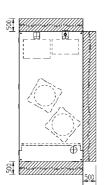
EWWP014-035KAW1N



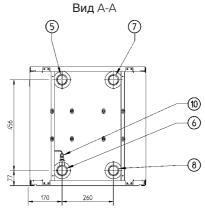
- 500
- Пространство вокруг блока, требуемое для обслуживания

- 1 Компрессор
- 2 Испаритель
- 3 Конденсатор
- 4 Клеммная коробка
- 5 Вход охлажденной воды
- 6 Выход охлажденной воды
- 7 Выход воды конденсатора
- 8 Вход воды конденсатора
- 9 Датчик температуры воды на входе испарителя
- 10 Датчик защиты от замораживания
- Датчик температуры воды на входе конденсатора


- 12 Пульт управления с цифровым дисплеем
- 13 Ввод электропитания (Ф 48)
- 14 Шаровой клапан
- 15 Водяной фильтр
- 16 Воздухоотделитель
- 17 Тройниковое соединение для продувки воздухом
- 18 Реле протока
- 19 Основной выключатель
- 20 Труба реле протока

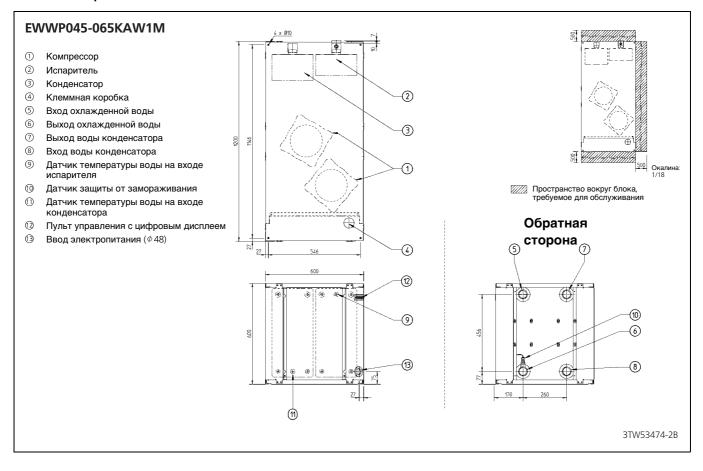


3TW55254-1B

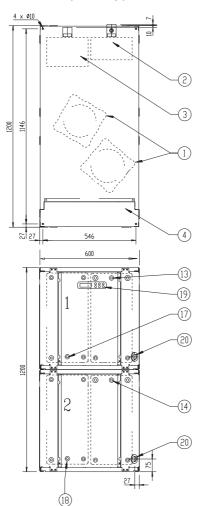

7 - 1 Чертеж в масштабе

EWWP045-065KAW1N

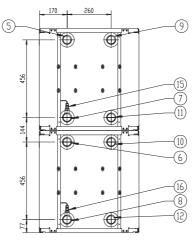
Пространство вокруг блока, требуемое для обслуживания Окалина 1/18


- 1 Компрессор
- 2 Испаритель
- 3 Конденсатор
- 4 Клеммная коробка
- 5 Вход охлажденной воды
- 6 Выход охлажденной воды
- 7 Выход воды конденсатора
- 8 Вход воды конденсатора
- 9 Датчик температуры воды на входе испарителя
- 10 Датчик защиты от замораживания
- 11 Датчик температуры воды на входе конденсатора

- 12 Пульт управления с цифровым дисплеем
- 13 Ввод электропитания (ϕ 48)
- 14 Шаровой клапан
- 15 Водяной фильтр
- 16 Воздухоотделитель
- 17 Тройниковое соединение для продувки воздухом
- 18 Реле протока
- 19 Основной выключатель
- 20 Труба реле протока


3TW55304-1B

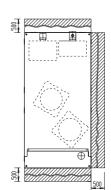
7 - 1 Чертеж в масштабе



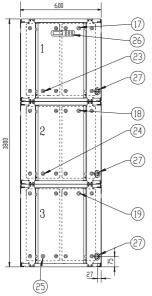
7 - 1 Чертеж в масштабе

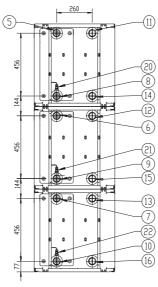
EWWP090-130KAW1N (32-48hp)

- 1 Компрессор
- 2 Испаритель
- 3 Конденсатор
- 4 Клеммная коробка
- 5 Вход охлажденной воды 1
- 6 Вход охлажденной воды 2
- 7 Выход охлажденной воды 1
- 8 Выход охлажденной воды 2
- 9 Выход воды конденсатора 1
- 10 Выход воды конденсатора 2
- 11 Вход воды конденсатора 1
- 12 Вход воды конденсатора 2


- 13 Датчик температуры воды на входе испарителя 1
- 14 Датчик температуры воды на входе испарителя 2
- 15 Датчик защиты от замораживания 1
- 16 Датчик защиты от замораживания 2
- 17 Температура воды на входе конденсатора 1
- 18 Температура воды на входе конденсатора 2
- 19 Пульт управления с цифровым дисплеем
- 20 Ввод электропитания (*ф* 48)

3TW53474-3B


7 - 1 Чертеж в масштабе



Обратная сторона

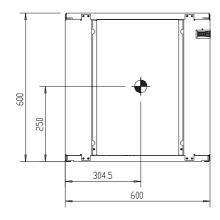
Пространство вокруг блока, требуемое для обслуживания Окалина 1/18

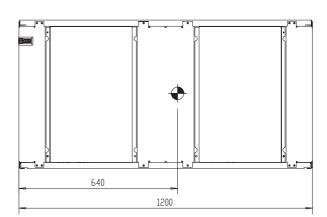
- 1 Компрессор
- 2 Испаритель
- 3 Конденсатор
- 4 Клеммная коробка
- 5 **Вход охлажденной воды** 1
- 6 Вход охлажденной воды 2
- 7 Вход охлажденной воды 3
- 8 Выход охлажденной воды 1
- 9 Выход охлажденной воды 2
- 10 Выход охлажденной воды 3
- 11 Выход воды конденсатора 1
- 12 Выход воды конденсатора 2
- 13 Выход воды конденсатора 3
- 14 Вход воды конденсатора 115 Вход воды конденсатора 2
- 16 Вход воды конденсатора 3

- 17 Датчик температуры воды на входе испарителя 1
- 18 Датчик температуры воды на входе испарителя 2
- 19 Датчик температуры воды на входе испарителя 3
- 20 Датчик защиты от замораживания 1
- 21 Датчик защиты от замораживания 2
- 22 Датчик защиты от замораживания 3
- 23 Температура воды на входе конденсатора 1
- 24 Температура воды на входе конденсатора 2
- 25 Температура воды на входе конденсатора 3
- 26 Пульт управления с цифровым дисплеем
- 27 Ввод электропитания (*ф* 48)

3TW53474-4B

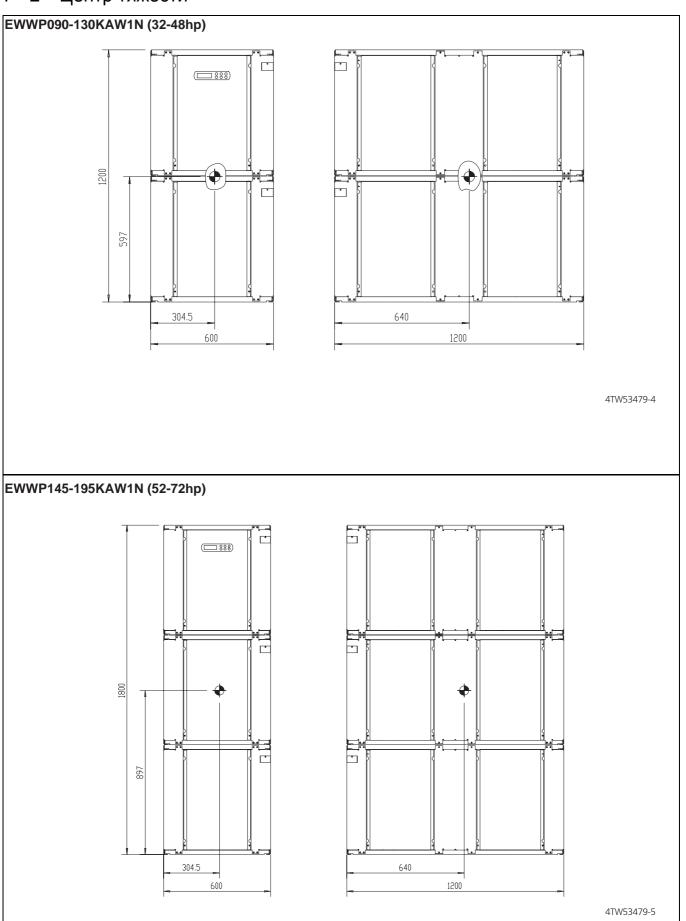
7


7 Чертеж в масштабе и центр тяжести


7 - 2 Центр тяжести

EWWP014-035KAW1N

4TW53479-2


EWWP045-065KAW1N

4TW53479-3

7 - 2 Центр тяжести

EWWP014-035KAW1N

 М1С
 Двигатель компрессора 1

 R3T
 Датчик температуры испарителя воды на выходе

 R5T
 Датчик температуры кондиционера воды на входе

 S1HP
 Реле высокого давления

 S4LP
 Реле низкого давления

 R4T
 Защита от замораживания

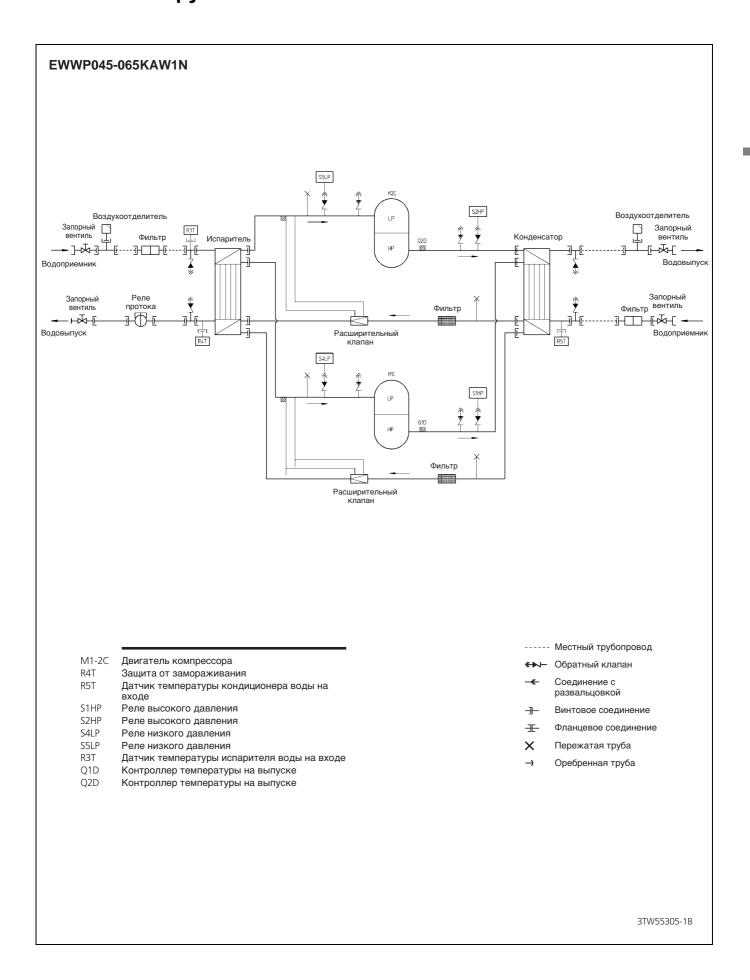
 S33T
 Контроллер температуры на выпуске

----- Местный трубопровод

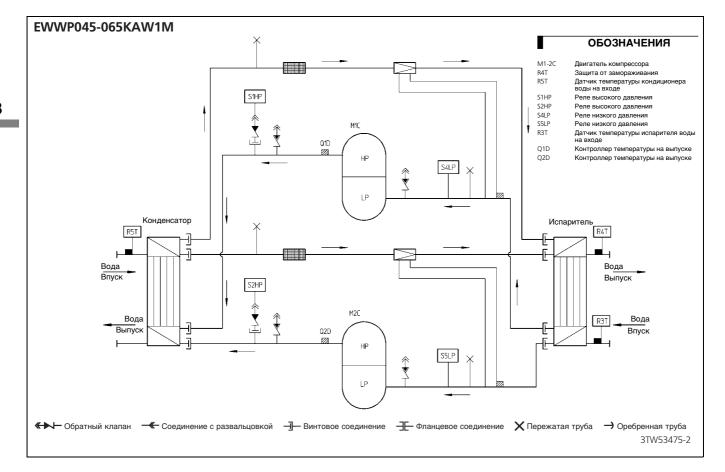
←► Обратный клапан

Соединение с развальцовкой

— Винтовое соединение

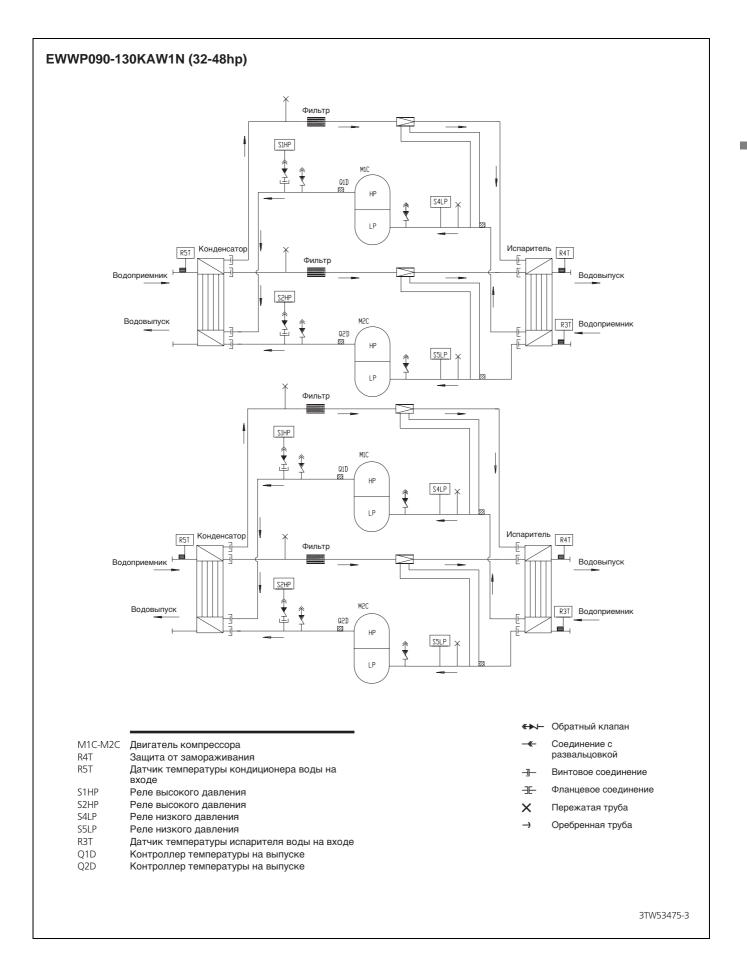

— Фланцевое соединение

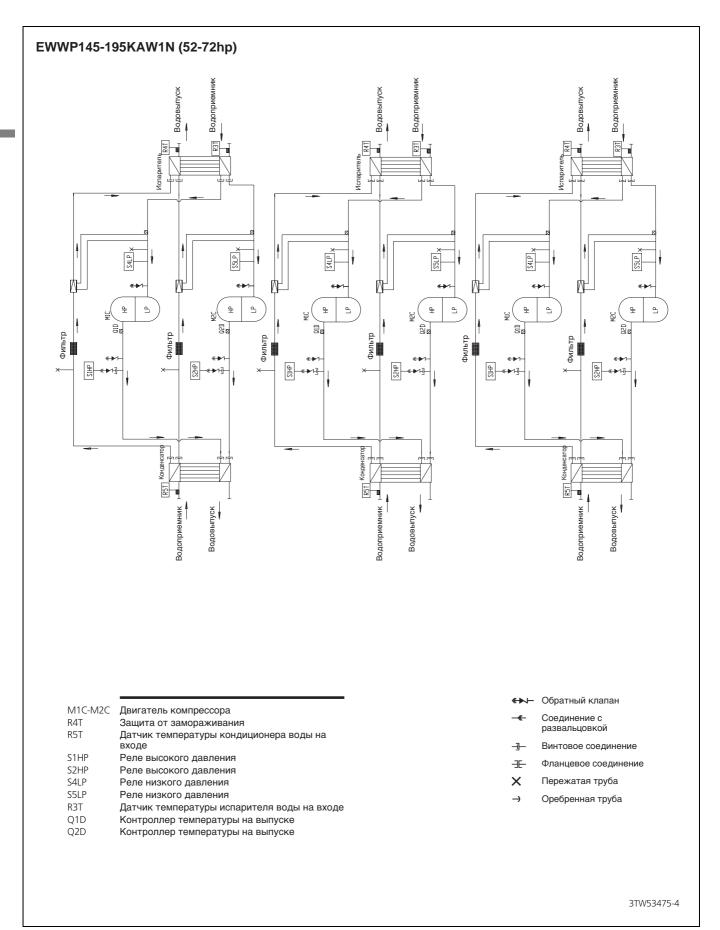
Х Пережатая труба

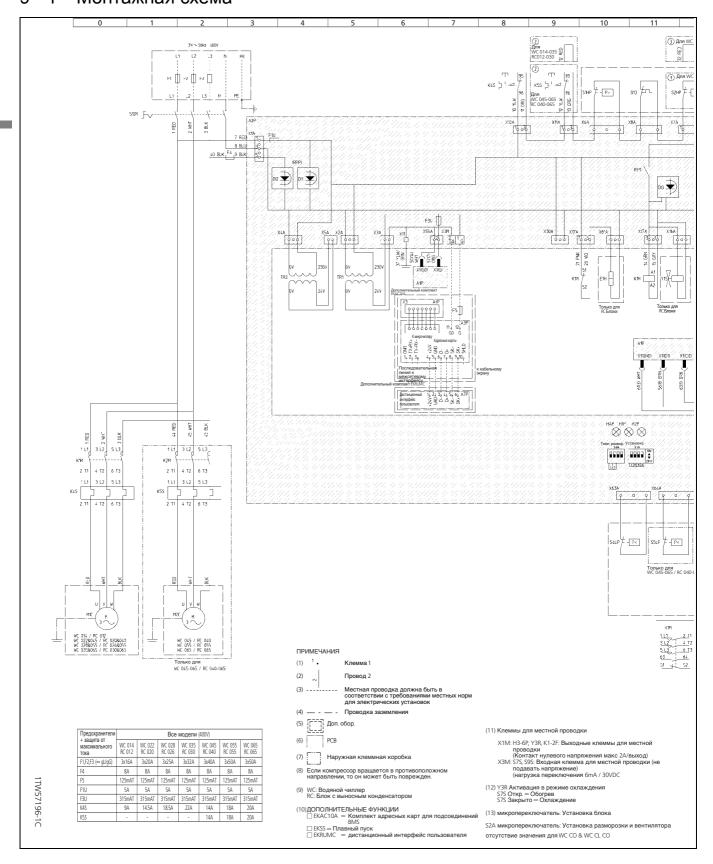

Оребренная труба

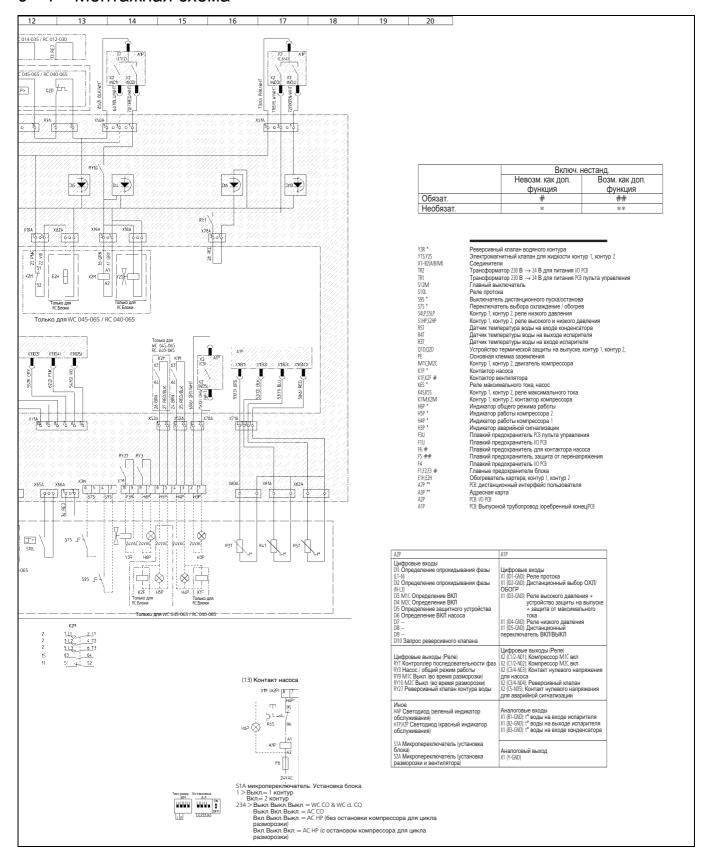
3TW55255-1B

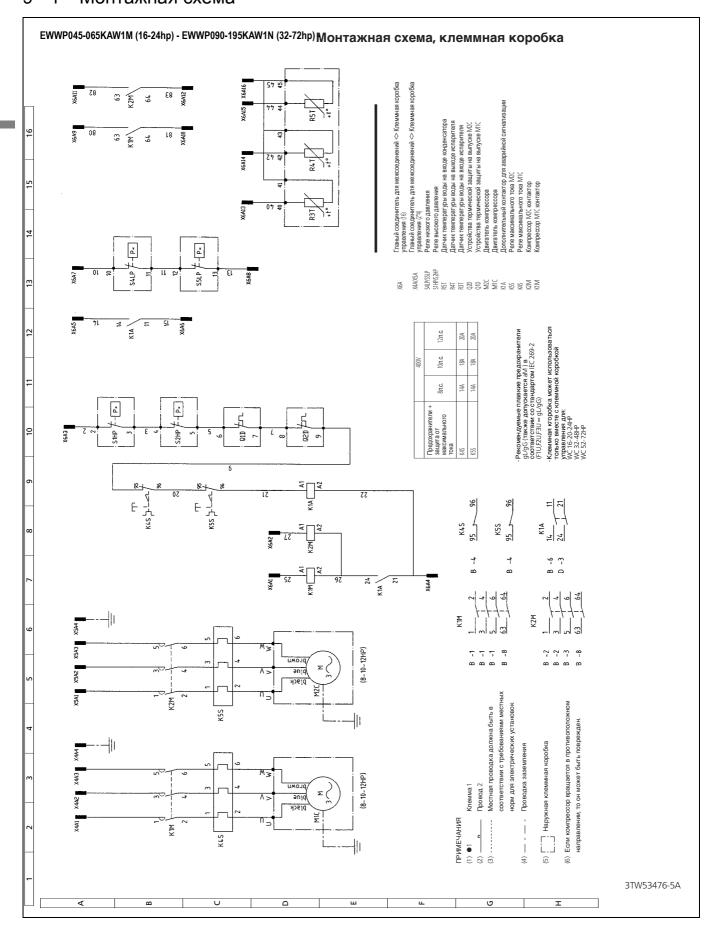
8 Схема трубной обвязки

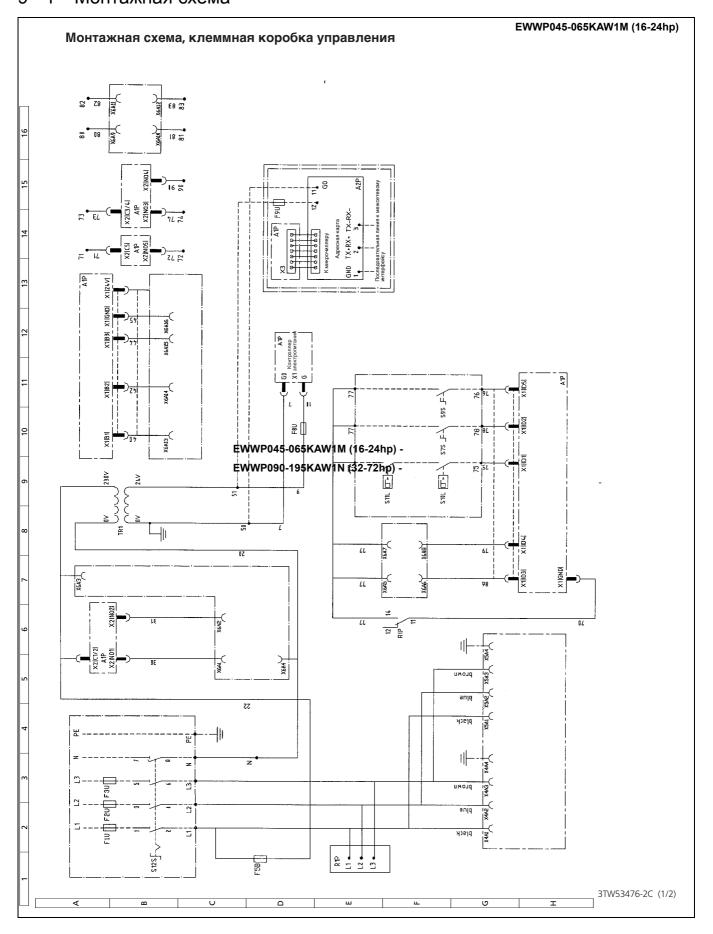



8 Схема трубной обвязки

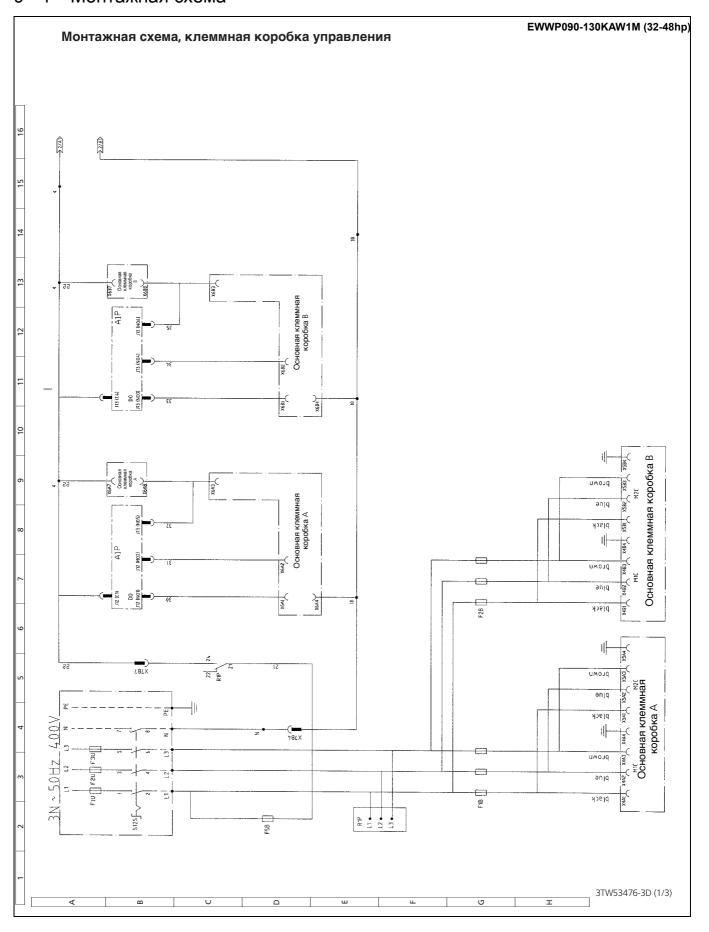

8

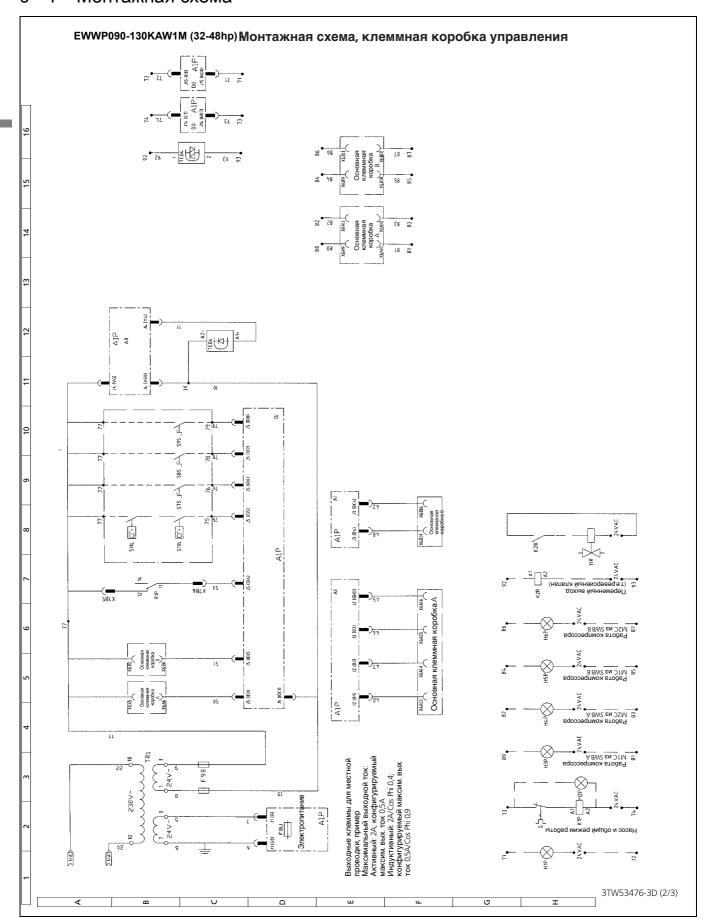

8 Схема трубной обвязки

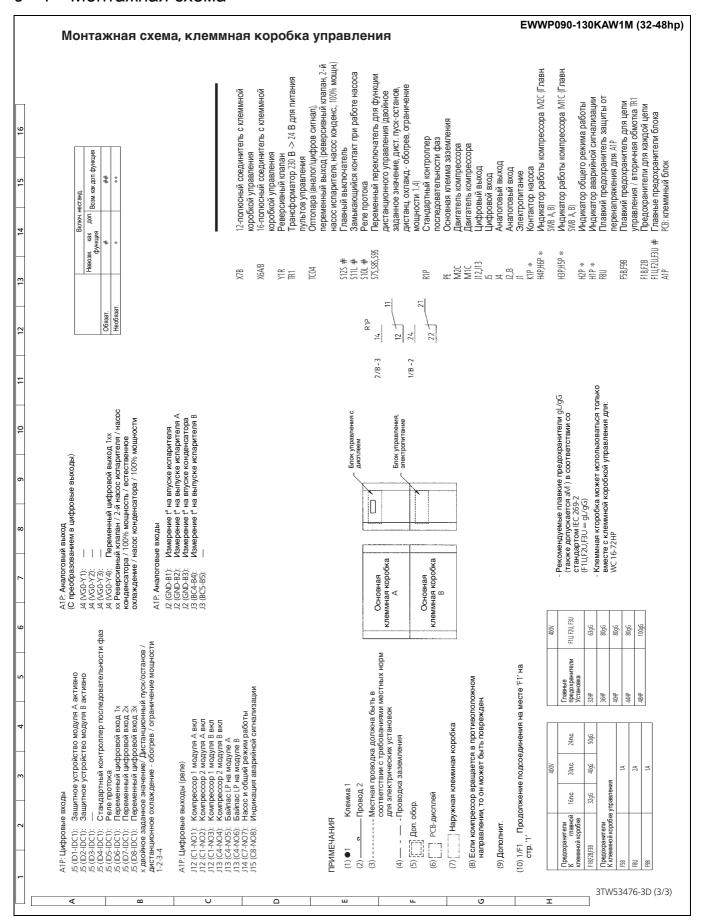


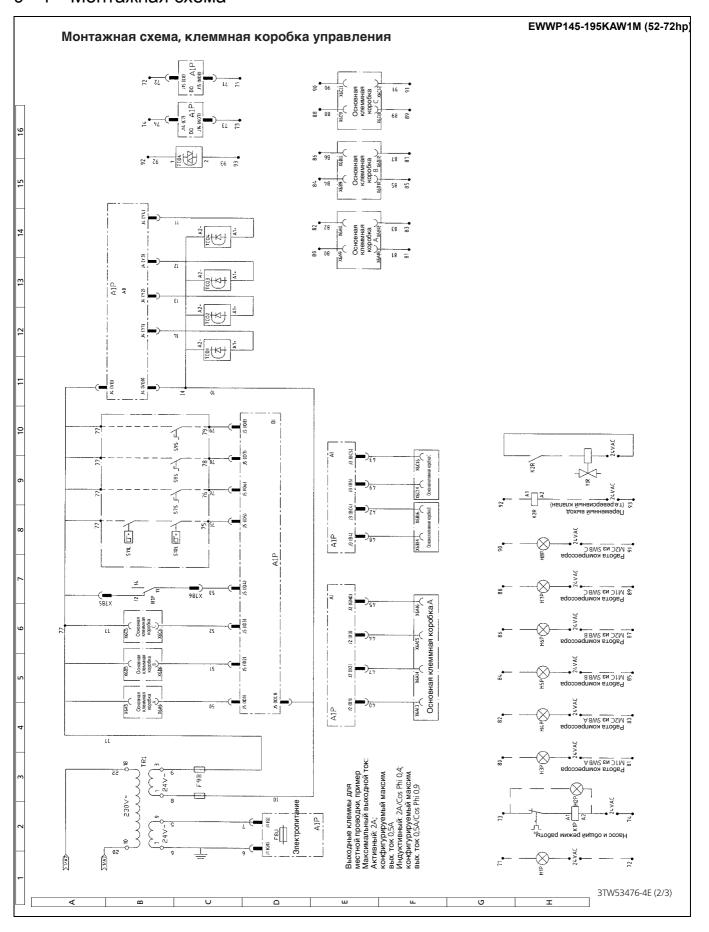

9

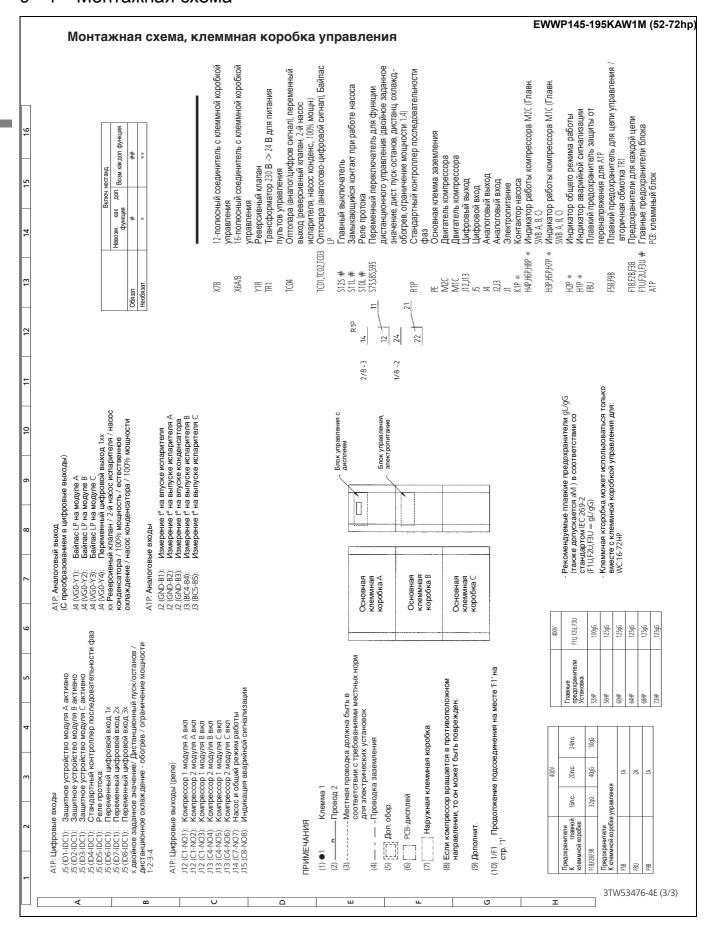



9

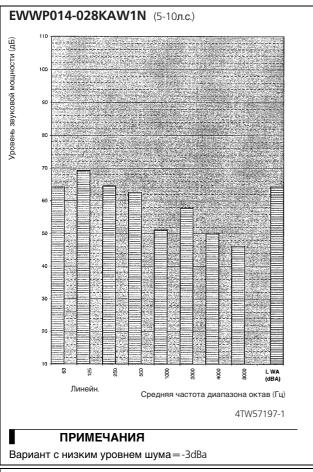


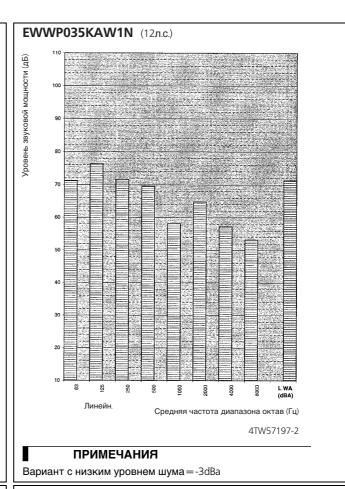

9

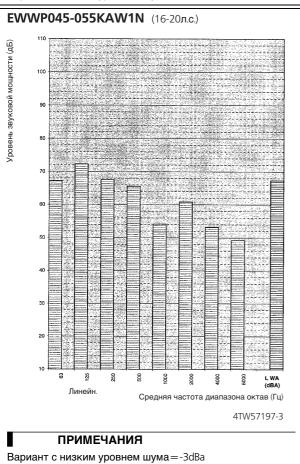

9 - 1 Монтажная схема

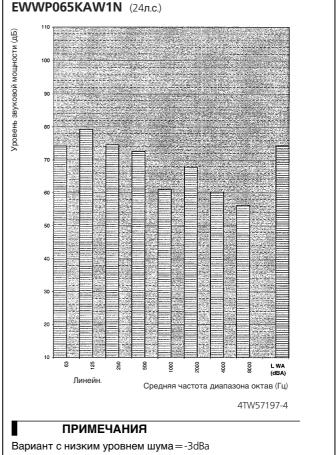


9 - 1 Монтажная схема

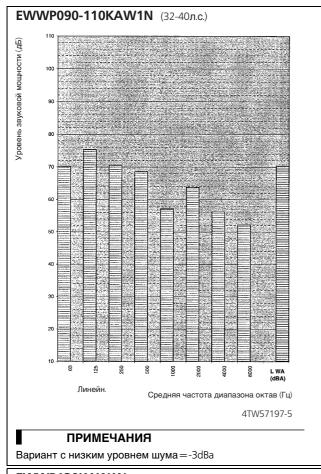

EWWP145-195KAW1M (52-72hp) Монтажная схема, клеммная коробка управления Основная клеммная коробка С x664 Основная клеммная коробка В ргэск F38 мгс Основная клеммная коробка A F.58 3TW53476-4E (1/3)

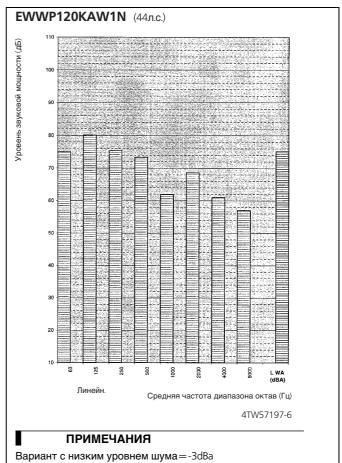


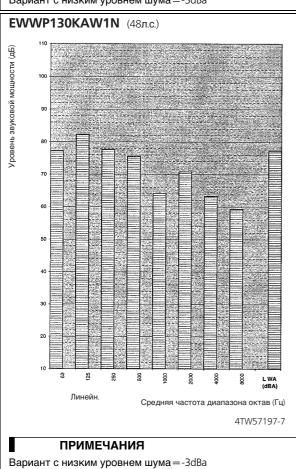


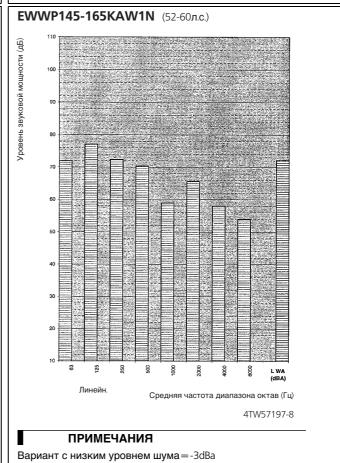

10 Данные по шуму

10 - 1 Спектр звуковой мощности

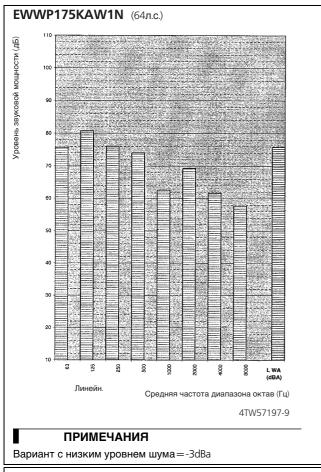


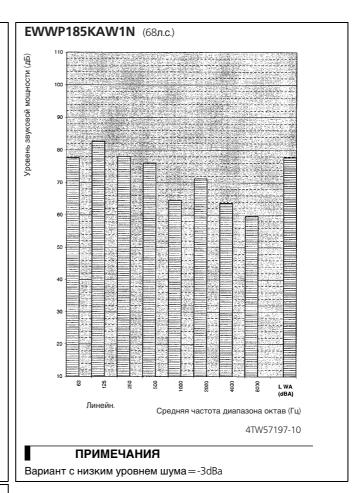


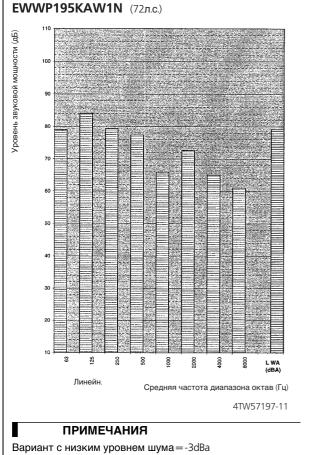



10 Данные по шуму

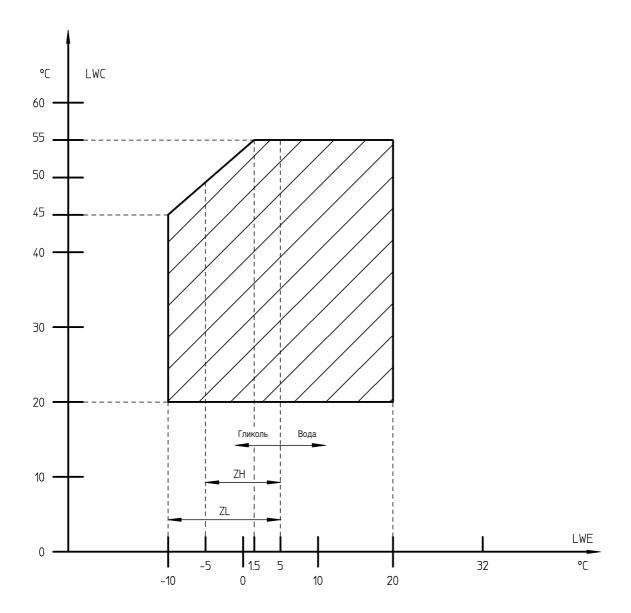
10 - 1 Спектр звуковой мощности



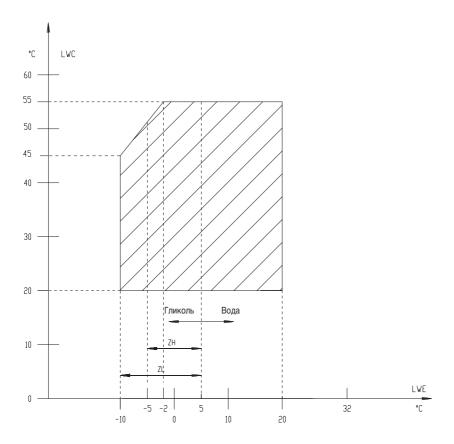




10 Данные по шуму


10 - 1 Спектр звуковой мощности

EWWP-KAW1N

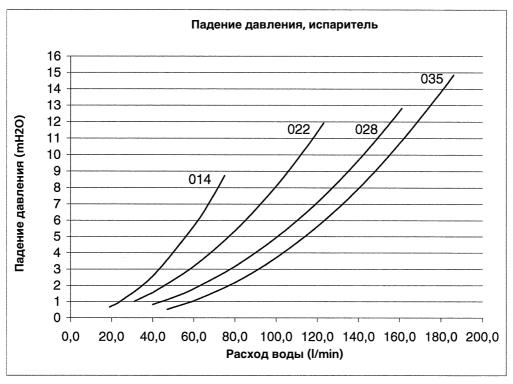


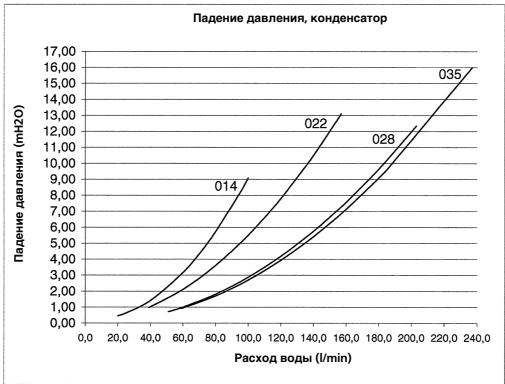
- * LWE = Температура воды испарителя на выходе (°C)
- * LWC = Конденсатор воды на выходе (°C)

4TW57193-1

11 Рабочий диапазон

EWWP045-065KAW1N 90kW (32hp) - 195kW (72hp)

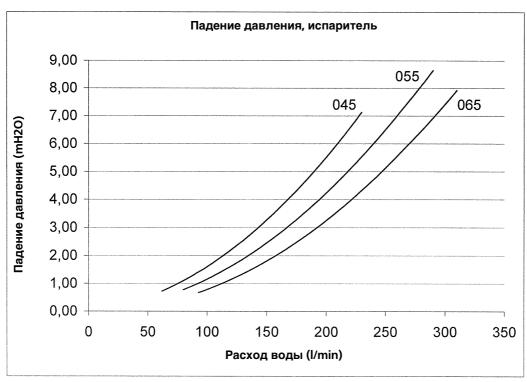


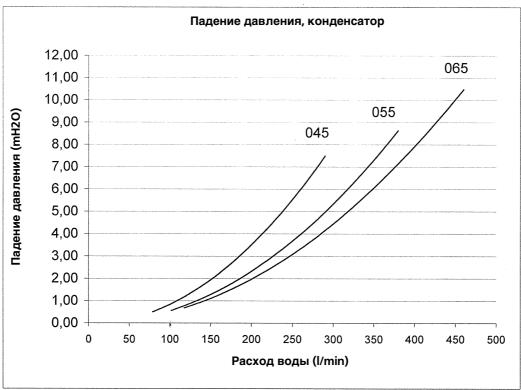

 $LWE = \mbox{Temпepatypa}$ воды испарителя на выходе (°C) $LWC = \mbox{Kohgencatop}$ воды на выходе (°C)

4TW53473-1B

12 - 1 Кривая перепада давления воды испаритель/конденсатор

EWWP014-035KAW1N

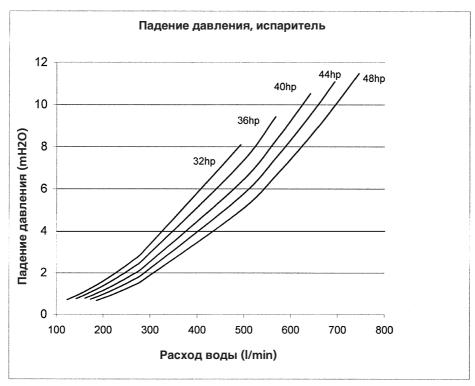


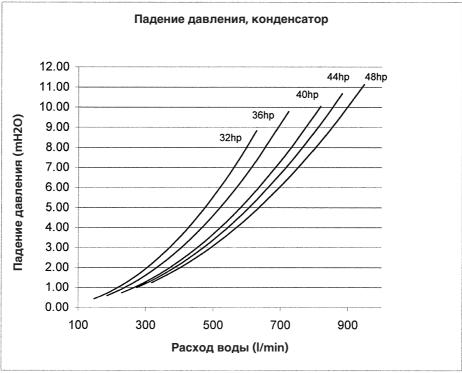


4TW57199-1A

12 - 1 Кривая перепада давления воды испаритель/конденсатор

EWWP045-065KAW1N

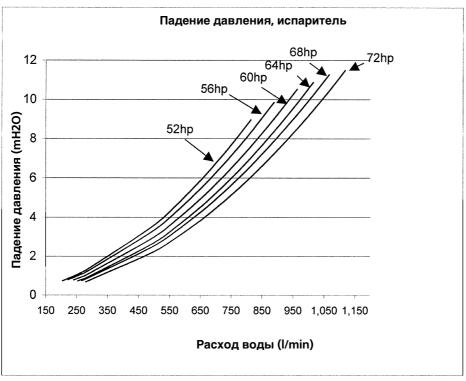


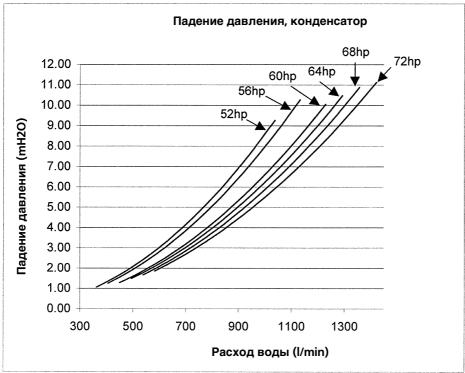


4TW57239-1

12 - 1 Кривая перепада давления воды испаритель/конденсатор

EWWP090-130KAW1N (32-48hp)




Предупреждение: Выбор значения расхода вне кривых может привести к повреждению или неисправности блока. См также минимально и максимально допустимый расход воды в технических параметров.

4TW53479-1A

12 - 1 Кривая перепада давления воды испаритель/конденсатор

EWWP145-195KAW1N (52-72hp)

Предупреждение: Выбор значения расхода вне кривых может привести к повреждению или неисправности блока. См также минимально и максимально допустимый расход воды в технических параметров.

4TW53479-1A