

технические данные

RR-B8V3B_RR-B9W1B

системы кондиционирования воздуха

Split Sky Air

R-410A

Split - Sky Air

Компания Daikin занимает уникальное положение в области производства оборудования для кондиционирования воздуха, компрессоров и хладагентов. Это стало причиной ее активного участия в решении экологических проблем.
В течение нескольких лет, деятельность компании Daikin была направлена на то, чтобы достичь лидирующего положения по поставкам продукции, которая в минимальной степени влияет на окружающую среду.
Эта задача требует, чтобы разработка и проектирование широкого спектра продуктов и систем управления выполнялись с учетом экологических требований, и были направлены на сохранение энергии и снижение объема отходов.

ISO14001 обеспечивает эффективную систему мер по охране окружающей среды, помогающую защитить здоровье человека и окружающую среду от потенциального воздействия нашей деятельности, продукции и услуг и направленную на поддержание и повышение качества окружающей среды.

Компания Daikin Europe N.V. прошла аттестацию своей Системы управления качеством по стандартам обеспечения качества согласно регистру Ллойда в соответствии с ISO9001. ISO9001 определяет качество в отношении проектирования, разработки, производства, а также услуг, относящихся к продукции.

Блоки от фирмы Daikin Europe N.V. удовлетворяют требованиям Европейских норм, гарантирующих безопасность изделия.

DAIKIN EUROPE N.V.

Naamloze Vennootschap Zandvoordestraat 300 B-8400 Ostend, Belgium www.daikin.eu

BTW: BE 0412 120 336

RPR Oostende

Компания Daikin Europe N.V. принимает участие в Программе сертификации EUROVENT для кондиционеров (АС), жидкостных холодильных установок (LCP) и фанкойлов (FC); данные о сертифицированных моделях включены в Перечень сертифицированных изделий EUROVENT.

"Настоящая публикация составлена только для справочных целей, и не является предложением, обязательным для выполнения компанией Daikin Europe N.V. Содержание этой публикации составлено компанией Daikin Europe N.V. на основании сведений, которыми она располагает. Компания не дает прямую или связанную гарантию относительно полноты, точности, надежности или соответствия конкретной цели содержания публикации и продуктов (и услуг), представленных в ней. Технические характеристики (и цены) могут быть изменены без предварительного уведомления. Компания Daikin Europe N.V. отказывается от какой-либо ответственности за прямые или косвенные убытки, понимаемые в самом широком смысле, вытекающие из прямого или косвенного использования и/или трактовки данной публикации. На все содержание распространяется авторское право Daikin Europe N.V."

технические данные

RR-B8V3B_RR-B9W1B

системы кондиционирования воздуха

R-410A

Split Sky Air

СОДЕРЖАНИЕ

RR-B8V3B_RR-B9W1B

1	Характеристики	5
2	Технические характеристики Номинальная производительность и номинальная потребляемая мощность Технические характеристики Электрические характеристики	6
3	Электрические параметры1	C
4	Безопасность1	3
5	Дополнительные функции	4
6	Таблицы мощности 1 Таблица комбинаций 1 Таблицы мощности, охлаждение 1 Таблицы мощности, охлаждение, одновременная работа 2	5
7	Чертеж в масштабе и центр тяжести 2 Чертеж в масштабе 2 Центр тяжести 2	24
8	Схема трубной обвязки2	8
9	Монтажная схема 3 Монтажная схема 3 Схема внешних соединений 3	30
10	Данные по шуму 3 Спектр звукового давления 3 Спектр звуковой мощности 3	33
11	Установка	
12	Рабочий диапазон	6

1 Характеристики

- Наружные блоки для парных, двухблочных, трехблочных и двойных двухблочных конфигураций
- Наружные блоки Daikin представляют собой изящные и прочные устройства, которые легко монтируются на крыше или террасе или просто размещаются на наружной стене дома.
- Блоки наружной установки оснащаются компрессорами со спиральной камерой, которые славятся низким уровнем шума и высокими показателями энергосбережения.
- Возможет доступ к трубопроводам снизу, спереди, сбоку или сзади.
- Клапаны для обслуживания скрыты внутри корпуса.
- Специальное акриловое антикоррозионное покрытие оребрения теплообменника обеспечивает более высокую устойчивость к воздействию агрессивных химических элементов в воздухе.

1

	альная							
	гельность и і		ная					
	иая мощност			RR71B8V3B	RR71B8W1B	RR100B8V3B	RR100B8W1B	RR125B8W1B
Для комбинации: внутренние блоки + наружные блоки	Внутренние бло	DKU		FCQ71C7VEB	FCQ71C7VEB	FCQ100C7VEB	FCQ100C7VEB	FCQ125C7VEB
Охлаждение	Стандартный	кВт		7.10	7.10	10.00	10.00	12.50
Входная мощность	Охлаждение	Стандартный	кВт	2.72	2.66	3.83	3.56	4.66
Для	EER	Охлаждени	е	2.61	2.67	2.61	2.81	2.68
комбинации: Маркировка энергопотреблены блоки +		Охлаждени		D	D	D	С	D
олоки + наружные блоки	Годовое потреб энергии		kWh	1360	1330	1915	1780	2330
	Внутренние бло			FBQ71B8V3B	FBQ71B8V3B	FBQ100B8V3B	FBQ100B8V3B	FBQ125B8V3B
Охлаждение	Стандартный	кВт		7.10	7.10	10.00	10.00	12.20
Входная мощность	Охлаждение		кВт	2.79	2.68	3.79	3.60	4.67
Для	EER	Охлаждени		2.54	2.65	2.64	2.78	2.61
комбинации: внутренние блоки +	Маркировка э нергопотребления	Охлаждени		Е	D	D	D	D
наружные блоки	Годовое потреб энергии		kWh	1395	1340	1895	1800	2335
	Внутренние бло			FHQ71BVV1B	FHQ71BVV1B	FHQ100BVV1B	FHQ100BVV1B	FHQ125BVV1B
Охлаждение	Стандартный	кВт		7.10	7.10	9.80	9.80	12.20
Входная мощность	Охлаждение		кВт	2.70	2.65	3.75	3.68	4.51
Для	EER	Охлаждени		2.63	2.68	2.61	2.66	2.71
комбинации: внутренние блоки +	Маркировка э нергопотребления	Охлаждение				D		T
наружные блоки	Годовое потреб энергии		kWh	1350	1325	1875	1840	2255
	Внутренние бло			FAQ71BVV1B	FAQ71BVV1B	FAQ100BVV1B	FAQ100BVV1B	FUQ125BVV1B
Охлаждение	Стандартный	кВт		7.10	7.10	10.00	10.00	12.20
Входная мощность	Охлаждение		кВт	2.65	2.53	3.56	3.52	4.57
Для	EER	Охлаждени		2.68	2.81	2.81	2.84	2.67
комбинации: внутренние блоки +	Маркировка э нергопотребления	Охлаждени		D	С	С	С	D
наружные блоки	Годовое потреб энергии		kWh	1325	1265	1780	1760	2285
	Внутренние бло			FUQ71BVV1B	FUQ71BVV1B	FUQ100BVV1B	FUQ100BVV1B	FDQ125B8V3B
Охлаждение	Стандартный	кВт		7.10	7.10	10.00	10.00	12.50
Входная мощность	Охлаждение	,	кВт	2.70	2.65	3.83	3.78	4.79
Для	EER	Охлаждени		2.63	2.68	2.61	2.65	2.61
комбинации: внутренние	Маркировка э нергопотр ебления	Охлаждени				D		,
блоки + наружные блоки	Годовое потреб энергии	бление	kWh	1350	1325	1915	1890	2395

2-2 Технич	неские характеристики	RR71B8V3B	RR71B8W1B	RR100B8V3B	RR100B8W1B	RR125B8W1B				
Корпус	Корпус Цвет		Daikin Белый							
	Материал Покрашенная оцинкованная сталь									

2-2 Техни	ческие харак	теристик	И	RR71B8V3B	RR71B8W1B	RR100B8V3B	RR100B8W1B	RR125B8W1B
Размеры	Блок	Высота	ММ	770	770	1170	1170	1170
		Ширина	ММ	900	900	900	900	900
		Глубина	ММ	320	320	320	320	320
	Упаковка	Высота	ММ	900	900	1300	1300	1300
		Ширина	ММ	980	980	980	980	980
		Глубина	ММ	420	420	420	420	420
Bec	Вес установки		КГ	83	81	102	99	106
	Масса брутто		КГ	87	85	107	104	111
Теплообменник	Размеры	Длина	ММ	857	857	857	857	857
		К-во рядо		2	2	2	2	2
		Шаг оребрения	ММ	2.00	2.00	2.00	2.00	2.00
		К-во заход	ЮВ	6	6	10	10	10
		Фронтал ьная поверхно сть	M ²	0.641	0.641	0.980	0.980	0.980
		К-во секци	IЙ	34	34	52	52	52
	Трубного типа				- I	Hi-XSS Труба охлаждени	19 R	
	Ребро	Тип				Ребро WF		
		Обработка	3		анти	коррозионная обработка	a (PE)	
Вентилятор	Тип					вентилятор с прямой пе	. ,	
·	Направление н	агнетания				Горизонт.		
	Количество	<u>·</u>		1	1	1 1	1	2
	Расход воздуха (номинальный)	Охлаждение	m³/min	48.0	48.0	55.0	55.0	89.0
	Двигатель	Количеств	0	1	1	1	1	1
	''	Модель				P47L11S		<u> </u>
		Положени	е			1 1		Ниже
Двигатель	Скорость (номинальная при 230 В)	Ступени	<u> </u>	3	3	3	3	3
Вентилятор	Двигатель	Произво дительно сть	Вт	65	65	65	65	85
		Положени	e					Выше
Двигатель	Скорость (номинальная при 230 В)	Ступени	-					3
Вентилятор	Двигатель	Произво дительно сть	Вт					65
Компрессор	Количество			1	1	1	1	1
	Двигатель	Модель		JT90G-P4V1N@S	JT90G-YE	JT125G-P4V1@S	JT125G-YE	JT160G-YE
	l.,	Тип		<u> </u>		тичный спиральный комі		
		Мощность двигателя	Вт	2200	2200	3000	3000	3750
		Нагреват ель картера	Вт	33	33	33	33	33
		Способ за	плска	<u> </u>		Прямой		<u> </u>
Рабочий	Охлаждение	Мин.	°CDB	-15.0	-15.0	-15.0	-15.0	-15.0
гаоочии диапазон	Омалидопис	Макс.	°CDB	46.0	46.0	46.0	46.0	46.0
Уровень шума (номинальный)	Охлаждение	Уровень звуковой мощности	дБ(А)	63.0	63.0	66.0	66.0	67.0
		Уровень звукового давления	дБ(А)	50.0	50.0	53.0	53.0	53.0

2-2 Технич	еские харан	стеристик	И	RR71B8V3B	RR71B8W1B	RR100B8V3B	RR100B8W1B	RR125B8W1B	
Refrigerant	Тип					R-410A			
	Заправка		КГ	2.7	2.7	3.7	3.7	3.7	
	Управление				Расшири	ительный клапан (элек	гронный)		
	К-во контуров			1	1	1	1	1	
Масло в	Тип					Daphne FVC68D			
контуре хладагента	Объем заправ	КИ	Л	1.5	1.5	1.5	1.5	1.5	
Подсоединение	Жидкость	Количеств	0	1	1	1	1	1	
труб	(OD)	Тип			Coe	единение с развальцов	кой	•	
		Диаметр (OD)	ММ	9.52	9.52	9.52	9.52	9.52	
	Газ	Количеств	0	1	1	1	1	1	
		Тип			Coe	единение с развальцов	кой	•	
		Диаметр (OD)	ММ	15.9	15.9	15.9	15.9	15.9	
	Дренаж	Количеств	0	3	3	3	3	3	
		Тип			•	Отверстие		•	
		Диаметр (OD)	ММ	26	26	26	26	26	
	Длина трубопроводов	Минимал ьный	М	5	5	5	5	5	
		Максима льный	М	70	70	70	70	70	
		Эквивале нтный	М	90	90	90	90	90	
		Не заправле нный	М	30	30	30	30	30	
	Перепад высот	Максима льный	М	30.0	30.0	30.0	30.0	30.0	
	Максимальныі высот между в блоками		М	0.5	0.5	0.5	0.5	0.5	
	Тепловая изол	пяция			Трубо	проводы для жидкости	и газа		
Метод размора	живания				У	/равновешивание масл	а		
Управление ра	змораживанием				Датчик темп	ературы теплообменни	іка (Наружн.)		
Метод регулиро	ования производ	дительности				Нет			
Защитные устр	ойства				Стандартный	контроллер последова	тельности фаз		
					Пла	авкий предохранитель I	РСВ		
					Реле ма	ксимального тока (ком	прессор)		
						Реле низкого давления	,		
						Реле высокого давлени			
						защита двигателя вен			
Стандартные	Элемент					екларация о соответств	•		
принадлежности	Количество			1	1	1	1	1 1	
	Элемент			•	L	1нструкции по установк		<u> </u>	
	Количество			1	1 1	1	1	1	
Примечания	NOTH TOOLEG					исит от указанного рас	· · · · · · · · · · · · · · · · · · ·		
r iprimo idilirizi				O TO OTHOOM ON BRIGHT	•	описанием уровней шум		оды. Волоо подрости	
				Уровень звуковой		бсолютной величиной, у источником звука.		сть", производимую	
					Величина уровня з	ввука измеряется в без	эховом помещении		
				Для дренажно	ого трубопровода нару	жного блока необходи (дополнительный).	и комплект обвязки д	ренажных труб	
				Номинальная мощность в режиме охлаждения: температура в помещении: 27°CDB/19°CWB * температура наружного воздуха: 35°CDB * эквивалентная длина труб с хладагентом: 5 м * перепад уровня: 0 м					
				Номинальная мощность в режиме обогрева: температура в помещении: 20°CDB, * температура наружного воздуха: 7°CDB/6°CWB * длина труб с хладагентом: 5 м * перепад уровня 0 м.					
						проводы для жидкости			

2-3 Элект	оические хар	актерист	ики	RR71B8V3B	RR71B8W1B	RR100B8V3B	RR100B8W1B	RR125B8W1B	
Электропитание	Наименование			V3	W1	V3	W1	W1	
	Phase			1	3N	1	3N	3N	
	Частота		Гц	50	50	50	50	50	
	Напряжение		В	230	400	230	400	400	
	Диапазон Минима. напряжений ьный		В	-10%	-10%	-10%	-10%		
		Максима льный	В	+10%	+10%	+10%	+10%		
Ток	Рекомендуемь предохранител		Α	32	16	40	16	20	
Проводные	Для подачи	Количеств	10	1	1	1	1	1	
соединения	электропитания	Замечани	е	3 жильный (Вкл. заземляющий провод)	5 жильный (Вкл. заземляющий провод)	3 жильный (Вкл. заземляющий провод)	5 жильный (Вкл. заземляющий провод)	5 жильный (Вкл. заземляющий провод)	
	Для	Количеств	10	1	1	1	1	1	
	подсоединения к внутренним блокам	Замечани	е						
Электропитани	ie			Только входная мощность наружного блока.					

3 Электрические параметры

I							16		0.5		I 15	
Комбинаци Внутренний блок	я олоков Наружный блок	Электропитание Hz-Volts Диапазон напряжений		MCA	TOCA	MFA	LRA	RLA	OF kW	FLA	kW	M FLA
FCQ71B	RR71B8V3B	50-230		16.6	23.3	32	75.5	12.2	0.065	0.6	0.045	0.7
FCQ71C	RR71B8V3B	50-230		16.4	23.1	32	75.5	12.2	0.065	0.6	0.065	0.5
FUQ71	RR71B8V3B	50-230	Max. 50Hz-253V	16.6	23.2	32	75.5	12.3	0.065	0.6	0.045	0.6
FHQ71	RR71B8V3B	50-230	Min. 50Hz-207V	16.8	23.2	32	75.5	12.5	0.065	0.6	0.062	0.6
FAQ71	RR71B8V3B	50-230		16.1	22.9	32	75.5	12.2	0.065	0.6	0.043	0.3
FBQ71	RR71B8V3B	50-230		17.4	23.5	32	75.5	12.7	0.065	0.6	0.125	0.9
FCQ71B	RR71B8W1B	50-400		7.3	11.3	16	41.1	4.8	0.065	0.6	0.045	0.7
FCQ71C	RR71B8W1B	50-400		7.1	11.1	16	41.1	4.8	0.065	0.6	0.065	0.5
FUQ71	RR71B8W1B	50-400	Max. 50Hz-440V	7.3	11.2	16	41.1	4.9	0.065	0.6	0.045	0.6
FHQ71	RR71B8W1B	50-400	Min. 50Hz-360V	7.5	11.2	16	41.1	5.0	0.065	0.6	0.062	0.6
FAQ71	RR71B8W1B	50-400		6.8	10.9	16	41.1	4.7	0.065	0.6	0.043	0.3
FBQ71	RR71B8W1B	50-400		8.1	11.5	16	41.1	5.3	0.065	0.6	0.125	0.9

3TW26379-9B

ОБОЗНАЧЕНИЯ

МСА : Мин. ток цепи

TOCA

Полный максимальный ток

МFA : Макс. ток предохранителя (см. Прим. 7)

LRA : Ток заторможенного ротора

RLA : Ток номинальной нагрузки

OFM : Двигатель вентилятора наружного блока IFM : Двигатель вентилятора внутреннего блока

FLA : Ток полной нагрузки

kW : Номинальная выходная мощность двигателя

ПРИМЕЧАНИЯ

1. RLA основан на следующих условиях:

Темп. в пом. 27°CDB/19,5°CWB

Температура наружного воздуха: 35°CDB

- 2. ТОСА означает полное значение каждой группы ОС
- 3. Диапазон напряжений
 - Блоки могут использоваться с электрическими системами, где напряжение, подаваемое на клеммы блока, находится в пределах указанного диапазона
- Максимально допустимый разбаланс напряжений между фазами составляет 2%.
- 5. MCA/MFA
 - $MCA = 1,25 \times RLA + все FLA, MFA = < 2,25 \times RLA + все FLA (следующий более низкий стандартный номинальный ток предохранителя мин.)$
- 6. Размер проводов выбирается по большему значению МСА или ТОСА.
- 7. Вместо плавкого предохранителя пользуйтесь автоматическим выключателем
- Более подробно условные соединения приведены на сайте http://www.daikineurope.com/extranet, выберите "Daikin Documentation" ("Документация Daikin") и "conditional connection" ("условное соединение"), "the requested product type" ("требуемый тип изделия") и "English" ("Английский") из выпадающих списков, щелкните на кнопку поиска

Затем щелкните на наименование нужного документа

3 Электрические параметры

Комбинаци	я блоков		Электропитание	9			Компр	ессор	OF	М		M
Внутренний блок	Наружный блок	Hz-Volts	Диапазон напряжений	MCA	TOCA	MFA	LRA	RLA	kW	FLA	kW	FLA
FCQ100B	RR100B8V3B	50-230		23.8	34.8	40	98.5	17.6	0.090	0.8	0.090	1.0
FCQ100C	RR100B8V3B	50-230		23.5	34.5	40	98.5	17.6	0.090	0.8	0.120	0.7
FUQ100	RR100B8V3B	50-230	Max. 50Hz-253V	23.3	34.9	40	98.5	17.1	0.090	0.8	0.090	1.1
FHQ100	RR100B8V3B	50-230	Min. 50Hz-207V	23.0	34.5	40	98.5	17.2	0.090	0.8	0.130	0.7
FAQ100	RR100B8V3B	50-230		23.0	34.2	40	98.5	17.4	0.090	0.8	0.049	0.4
FBQ100	RR100B8V3B	50-230		23.2	34.8	40	98.5	17.1	0.090	0.8	0.135	1.0
FCQ100B	RR100B8W1B	50-400		9.2	11.8	16	48.2	5.9	0.090	0.8	0.090	1.0
FCQ100C	RR100B8W1B	50-400		8.9	11.5	16	48.2	5.9	0.090	0.8	0.120	0.7
FUQ100	RR100B8W1B	50-400	Max. 50Hz-440V	8.9	11.9	16	48.2	5.6	0.090	0.8	0.090	1.1
FHQ100	RR100B8W1B	50-400	Min. 50Hz-360V	8.6	11.5	16	48.2	5.7	0.090	0.8	0.130	0.7
FAQ100	RR100B8W1B	50-400		8.3	11.2	16	48.2	5.7	0.090	0.8	0.049	0.4
FBQ100	RR100B8W1B	50-400	1	8.9	11.8	16	48.2	5.7	0.090	0.8	0.135	1.0

3TW26399-9B

ОБОЗНАЧЕНИЯ

МСА : Мин. ток цепи

ТОСА : Полный максимальный ток

МҒА : Макс. ток предохранителя (см. Прим. 7)

LRA : Ток заторможенного ротора RLA : Ток номинальной нагрузки

OFM : Двигатель вентилятора наружного блока IFM : Двигатель вентилятора внутреннего блока

FLA : Ток полной нагрузки

kW : Номинальная выходная мощность двигателя

ПРИМЕЧАНИЯ

1. RLA основан на следующих условиях: Темп. в пом. 27°CDB/19,5°CWB Температура наружного воздуха : 35°CDB

2. ТОСА означает полное значение каждой группы ОС

3. Диапазон напряжений

Блоки могут использоваться с электрическими системами, где напряжение, подаваемое на клеммы блока, находится в пределах указанного диапазона

- Максимально допустимый разбаланс напряжений между фазами составляет 2%.
- 5. MCA/MFA
 - $MCA = 1,25 \times RLA + все FLA$, $MFA = < 2,25 \times RLA + все FLA$ (следующий более низкий стандартный номинальный ток предохранителя мин.)
- 6. Размер проводов выбирается по большему значению МСА или ТОСА.
- 7. Вместо плавкого предохранителя пользуйтесь автоматическим выключателем
- 8. Более подробно условные соединения приведены на сайте http://www.daikineurope.com/extranet, выберите "Daikin Documentation" ("Документация Daikin") и "conditional connection" ("условное соединение"), "the requested product type" ("требуемый тип изделия") и "English" ("Английский") из выпадающих списков, щелкните на кнопку помска

Затем щелкните на наименование нужного документа.

3 Электрические параметры

Комбинаци	я блоков		Электропитание	Электропитание					OFM		IFM	
Внутренний блок	Наружный блок	Hz-Volts	Диапазон напряжений	MCA	TOCA	MFA	LRA	RLA	kW	FLA	kW	FLA
FCQ125B	RR125B8W1B	50-400		11.9	15.3	20	63	7.7	0.065 +0.085	0.6+0.7	0.09	1.0
FCQ125C	RR125B8W1B	50-400		11.9	15.3	20	63	7.7	0.065 +0.085	0.6+0.7	0.12	1.0
FUQ125	RR125B8W1B	50-400	Max. 50Hz-400V	11.7	15.4	20	63	7.4	0.065 +0.085	0.6+0.7	0.09	1.1
FHQ125	RR125B8W1B	50-400	Min. 50Hz-360V	11.4	15.0	20	63	7.5	0.065 +0.085	0.6+0.7	0.13	0.7
FBQ125	RR125B8W1B	50-400		12.2	15.7	20	63	7.6	0.065 +0.085	0.6+0.7	0.225	1.4
FDQ125	RR125B8W1B	50-400		14.9	18.5	20	63	7.5	0.065 +0.085	0.6+0.7	0.5	4.2

3TW26419-9B

ОБОЗНАЧЕНИЯ

МСА : Мин. ток цепи

FLA

TOCA : Полный максимальный ток

MFA : Макс. ток предохранителя (см. Прим. 7)

LRA : Ток заторможенного ротора RLA : Ток номинальной нагрузки

OFM : Двигатель вентилятора наружного блока IFM : Двигатель вентилятора внутреннего блока

: Ток полной нагрузки

kW : Номинальная выходная мощность двигателя

ПРИМЕЧАНИЯ

RLA основан на следующих условиях:
 Темп. в пом. 27°CDB/19,5°CWB

Температура наружного воздуха: 35°CDB

- 2. ТОСА означает полное значение каждой группы ОС
- 3. Диапазон напряжений Блоки могут использоваться с электрическими системами, где напряжение, подаваемое на клеммы блока, находится в пределах указанного диапазона
- Максимально допустимый разбаланс напряжений между фазами составляет 7%
- 5. MCA/MFA
 - $MCA = 1,25 \times RLA + все FLA, MFA = < 2,25 \times RLA + все FLA (следующий более низкий стандартный номинальный ток предохранителя мин.)$
- 6. Размер проводов выбирается по большему значению МСА или ТОСА.
- 7. Вместо плавкого предохранителя пользуйтесь автоматическим выключателем
- Более подробно условные соединения приведены на сайте http://www.daikineurope.com/extranet, выберите "Daikin Documentation" ("Документация Daikin") и "conditional connection" ("условное соединение"), "the requested product type" ("требуемый тип изделия") и "English" ("Английский") из выпадающих списков, щелкните на кнопку поиска.

Затем щелкните на наименование нужного документа.

4 Безопасность

RR-RQ

	RQ71BV3	RQ100BV3	RQ125BW1	RR71BV3	RR100BV3	RR125BW1				
Модель защитного	RQ71BW1	RQ100BW1		RR71BW1	RR100BW1					
устройства	REQ71BV3	REQ100BV3	REQ125BW1							
	REQ71BW1	REQ100BW1								
Тепловая защита двигателя			Выкл 1	35 <u>+</u> 5°C						
вентилятора										
HPS	Выкл 4,15 ⁺⁰ / _{-0,10} МПа									
HPS			Вкл 3,2 ^{+0,1}	¹⁵ / _{-0,15} МПа						
LDC			Выкл -0,03 ⁺¹	^{0,02} / _{-0,02} МПа						
LPS			Вкл 0,05 ^{+0,}	⁰³ / _{-0,03} МПа						
Макс. температура подаваемого воздуха	Термисторное и программное управление									
Реле максимального тока		Управление по	датчику максимальн	ого тока и программн	ное управление					

4TW26321-2B

4

5 Дополнительные функции

Опция для RQ71-125B(V3,W1) и RR71-125B(V3,W1)

Цеорошие опи			Название комплекта							
Название опц	ции	RQ71B	RQ71B RQ100B RQ125B RR71B RR100B RR							
Сливная пробка центрально поддона		KKPJ5F180								
Ответвления труб с	Двухблочная конфигурация	KHRQ22M20TA								
хладагентом	Трехблочная конфигурация	1	KHRQ	127H	-	KHRQ1	27H			

3TW26329-1

6 - 1 Таблица комбинаций

Возможные комбинации и стандартная мощность для работы двухблочных и трехблочных конфигураций

			Возможная ко	мбинация внутре	нних моделей			
Наружные модели			Оді	дновременная работа				
	Двухб	блочная конфигу	рация		Трехблочная конфигур	рация		
	BX	вых	BX	BX	ВЫХ	BX		
RQ71BV3/W1 RR71BV3/W1	35-35 (KHRQ22M20TA7)							
RQ100BV3/W1 RR100BV3/W1	50-50 (KHRQ22M20TA7)	50-60 (KHRQ22M20TA7)	35-71 (KHRQ22M20TA7)	35-35-35 (KHRQ127H7)				
RQ125BW1 RR125BW1	60-60 (KHRQ22M20TA7)	50-71 (KHRQ22M20TA7)		50-50-50 (KHRQ127H7)				

ПРИМЕЧАНИЯ

1 Типы внутренних блоков:

FCQ 35-71

FFQ 35-60

6

FUQ 71

FHQ 35-71 FAQ 71

FBQ 35-71

- Мощности отдельных внутренних блоков не приведены, поскольку комбинации даны для одновременной работы (= внутренние блоки, установленные в одной помещении).
- 3 Если в комбинации используются различные модели внутренних блоков, необходимо определить контроллер дистанционного

- управления, оснащенный большинством функций как основной блок.
- 4 В скобках указаны комплекты Refnet, необходимые для установки комбинации блоков.
- 5 Технические условия отдельных наружных и внутренних блоков приведены в технических условиях для парных систем.
- 6 Номинальные мощности охлаждения основаны на следующих условиях: температура воздуха внутри помещения: 27°CDB, 19°CWB, температура наружного воздуха: 35°CDB. Номинальные мощности обогрева основаны на следующих условиях: температура воздуха внутри помещения: 20°CDB, температура наружного воздуха 7°CDB, 6°CWB.

3TW26329-3

6 - 2 Таблицы мощности, охлаждение

FAQ71-100B + RR71-100BV3 / RR71-100BW1

Мощность охлаждения

	Вну	утр.							Темпе	ература	наруж	ного во	здуха (°CDB)						
Наружн.	EWB	EDB		20			25			32			35			40			46	
	(°C)	(°C)	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
	12,0	18,0	6,2	4,9	1,81	6,1	4,8	1,97	5,7	4,7	2,20	5,5	4,6	2,36	5,3	4,5	2,60	4,8	4,1	2,83
	14,0	20,0	6,6	4,9	1,84	6,5	4,8	2,00	6,0	4,7	2,24	5,9	4,6	2,40	5,5	4,5	2,64	5,2	4,1	2,88
	16,0	22,0	7,2	5,0	1,88	7,0	4,9	2,04	6,5	4,8	2,28	6,3	4,7	2,45	6,0	4,6	2,69	5,4	4,2	2,93
71	18,0	25,0	7,7	5,2	1,92	7,5	5,0	2,09	7,2	4,9	2,34	6,8	4,8	2,50	6,4	4,6	2,76	5,9	4,4	3,01
/ 1	19,0	27,0	8,0	5,3	1,94	7,7	5,2	2,11	7,3	5,0	2,36	7,1	4,8	2,53	6,6	4,7	2,78	6,1	4,5	3,04
	19,5	27,0	8,0	5,3	1,95	7,9	5,2	2,12	7,4	5,0	2,37	7,2	4,8	2,54	6,7	4,7	2,79	6,2	4,5	3,05
	22,0	30,0	8,7	5,4	1,98	8,5	5,3	2,16	8,0	5,2	2,42	7,9	4,9	2,59	7,4	4,8	2,85	6,7	4,5	3,11
	24,0	32,0	9,4	5,4	2,00	9,1	5,3	2,18	8,6	5,2	2,44	8,4	5,0	2,61	8,0	4,8	2,88	7,3	4,5	3,14
	12,0	18,0	8,4	7,2	2,49	8,3	7,1	2,75	8,1	6,9	3,11	7,8	6,8	3,29	7,5	6,4	3,64	6,8	6,1	4,08
	14,0	20,0	8,9	7,2	2,53	8,8	7,1	2,80	8,7	6,9	3,16	8,4	6,8	3,34	7,8	6,4	3,71	7,4	6,1	4,16
	16,0	22,0	10,1	7,3	2,57	9,8	7,2	2,85	9,1	7,0	3,22	8,9	6,9	3,40	8,5	6,5	3,77	7,7	6,2	4,23
100	18,0	25,0	10,8	7,6	2,64	10,5	7,5	2,92	9,8	7,1	3,30	9,6	7,0	3,48	9,0	6,8	3,86	8,3	6,3	4,33
100	19,0	27,0	11,1	7,7	2,66	10,8	7,6	2,95	10,1	7,2	3,33	10,0	7,1	3,52	9,4	6,9	3,90	8,6	6,4	4,38
	19,5	27,0	11,2	7,7	2,67	11,0	7,6	2,96	10,3	7,2	3,34	10,1	7,1	3,53	9,5	6,9	3,91	8,7	6,4	4,39
	22,0	30,0	12,2	7,8	2,73	11,8	7,7	3,02	11,2	7,3	3,41	11,0	7,2	3,60	10,4	7,1	3,99	9,5	6,7	4,48
	24,0	32,0	13,0	7,9	2,75	12,7	7,8	3,05	11,9	7,5	3,44	11,6	7,3	3,64	11,1	7,2	4,03	10,2	6,8	4,52

символы

FR: Расход воздуха [м³/мин.] BF: Коэффициент байпаса

EWB: Темп. смоч. термом. на входе [°CWB] EDB: Темп. сух. термом. на входе [°CDB]

DB*: Темп. сух. термом. [°CDB]

TC: Общая мощность охлаждения [кВт] SHC: Ощутимая мощность обогрева [кВт]

РІ: Входная мощность (Компр. + внутр. + наружн. двигатель вентилятора) [кВт]

ВНИМАНИЕ

ТС и SHС приведены в кВт.

V1/V3: 230 В [50 Гц] W1: 400 В [50 Гц]

ПРИМЕЧАНИЯ

- Приведенные номинальные значения являются полезными мощностями. Включено влияние нагрева двигателя вентилятора.
- 2 показаны номинальные мощности.
- 3 Значение SHC зависит от каждой EWB и EDB. SHC*= SHC поправка для другой температуры сухого термометра.
 - = 0,29 x 60 x AFR [м3/мин.] x (1-BF) x (DB*-EDB)/860 Добавить SHC* κ SHC если SHC > TC, то TC = SHC.
- 4 Допустима прямая интерполяция. Экстраполяция не допускается.
- 5 Мощности основаны на следующих условиях. Соответствующая длина труб с хладагентом: 7,5 м Перепад уровня: 0 м
- 6 Расход воздуха и ВF приведены в таблице ниже.

Модель		FAQ
71	AFR	19
/ 1	BF	0,08
100	AFR	23
100	BF	0,1

 Добавить следующие поправки к входной мощности каждой модели.

Модель		FAQ
71	V3	0,12
/ 1	W1	0
100	V3	0,04
100	W1	0

3TW26372-5

6 - 2 Таблицы мощности, охлаждение

FUQ71-125B + RR71-100BV3/RR71-125BW1

Таблица мощностей охлаждения

	Вну	/тр.							Тем	перату	ра нару	жного в	оздуха	(°CDB)						
Наружн.	EWB	EDB		20			25			32			35			40			46	
	(°C)	(°C)	TC	SHC	Pl	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	Pl	TC	SHC	PI
	12.0	18.0	6.2	4.9	1.90	6.1	4.8	2.06	5.7	4.7	2.31	5.5	4.6	2.47	5.3	4.5	2.72	4.8	4.1	2.97
	14.0	20.0	6.6	4.9	1.93	6.5	4.8	2.10	6.0	4.7	2.35	5.9	4.6	2.52	5.5	4.5	2.77	5.2	4.1	3.02
	16.0	22.0	7.2	5.0	1.96	7.0	4.9	2.13	6.5	4.8	2.39	6.3	4.7	2.56	6.0	4.6	2.82	5.4	4.2	3.07
71	18.0	25.0	7.7	5.2	2.01	7.5	5.0	2.19	7.2	4.9	2.45	6.8	4.8	2.62	6.4	4.6	2.89	5.9	4.4	3.15
	19.0	27.0	8.0	5.3	2.03	7.7	5.2	2.21	7.3	5.0	2.47	7.1	4.8	2.65	6.6	4.7	2.92	6.1	4.5	3.18
	19.5	27.0	8.0	5.3	2.04	7.9	5.2	2.22	7.4	5.0	2.48	7.2	4.8	2.66	6.7	4.7	2.92	6.2	4.5	3.19
	22.0 24.0	30.0 32.0	8.7 9.4	5.4 5.4	2.08 2.10	8.5 9.1	5.3 5.3	2.26 2.28	8.0 8.6	5.2 5.2	2.53 2.56	7.9 8.4	4.9 5.0	2.71 2.74	7.4 8.0	4.8 4.8	2.98 3.01	6.7 7.3	4.5 4.5	3.25 3.29
	24.0	32.0	9.4	3.4	2.10	9.1	5.5	2.20	0.0	J.2	2.50	0.4	5.0	2.14	0.0	4.0	3.01	1.3	4.0	3.29
	12.0	18.0	8.4	7.2	2.67	8.3	7.1	2.96	8.1	6.9	3.34	7.8	6.8	3.53	7.5	6.4	3.91	6.8	6.1	4.39
	14.0	20.0	8.9	7.2	2.72	8.8	7.1	3.01	8.7	6.9	3.40	8.4	6.8	3.59	7.8	6.4	3.98	7.4	6.1	4.46
	16.0	22.0	10.1	7.3	2.77	9.8	7.2	3.06	9.1	7.0	3.46	8.9	6.9	3.65	8.5	6.5	4.05	7.7	6.2	4.54
100	18.0	25.0	10.8	7.6	2.83	10.5	7.5	3.14	9.8	7.1	3.54	9.6	7.0	3.74	9.0	6.8	4.15	8.3	6.3	4.65
100	19.0	27.0	11.1	7.7	2.86	10.8	7.6	3.17	10.1	7.2	3.58	10.0	7.1	3.78	9.4	6.9	4.19	8.6	6.4	4.70
	19.5	27.0	11.2	7.7	2.87	11.0	7.6	3.18	10.3	7.2	3.59	10.1	7.1	3.79	9.5	6.9	4.20	8.7	6.4	4.72
	22.0	30.0	12.2	7.8	2.93	11.8	7.7	3.24	11.2	7.3	3.66	11.0	7.2	3.87	10.4	7.1	4.29	9.5	6.7	4.81
	24.0	32.0	13.0	7.9	2.96	12.7	7.8	3.27	11.9	7.5	3.69	11.6	7.3	3.91	11.1	7.2	4.33	10.2	6.8	4.86
·	12.0	18.0	11.1	9.5	3.43	10.8	9.2	3.62	10.0	8.7	3.98	9.7	8.6	4.27	9.2	8.4	4.73	8.5	7.9	5.19
	14.0	20.0	11.8	9.5	3.49	11.4	9.2	3.68	10.0	8.7	4.06	10.4	8.6	4.34	9.8	8.4	4.82	9.1	7.9	5.28
	16.0	22.0	12.7	9.6	3.56	12.1	9.3	3.75	11.4	8.8	4.13	11.1	8.7	4.42	10.4	8.5	4.90	9.6	8.0	5.38
	18.0	25.0	13.3	9.9	3.64	13.0	9.5	3.84	12.1	9.1	4.23	11.8	9.0	4.52	11.2	8.7	5.02	10.3	8.3	5.51
125	19.0	27.0	13.6	10.0	3.68	13.3	9.5	3.88	12.7	9.2	4.27	12.2	9.0	4.57	11.5	8.8	5.07	10.7	8.4	5.56
	19.5	27.0	13.8	10.0	3.69	13.5	9.5	3.89	12.8	9.2	4.28	12.4	9.1	4.59	11.7	8.8	5.09	10.9	8.4	5.58
	22.0	30.0	15.1	10.1	3.76	14.6	9.8	3.97	13.7	9.4	4.37	13.4	9.3	4.68	12.9	9.1	5.19	11.9	8.6	5.69
	24.0	32.0	15.9	10.2	3.80	15.5	9.9	4.01	14.6	9.5	4.41	14.3	9.4	4.72	13.6	9.2	5.24	12.8	8.9	5.75

3TW26372-4A

ОБОЗНАЧЕНИЯ

(m³/min) Расход воздуха Коэффициент байпаса EWB: (°CWB) Темп. смоч. термом. на входе EDB: Темп. сух. термом. на входе (°CDB) DB*: Темп. сух. термом. (°CDB) TC: Общая мощность охлаждения (kW) SHC: Мощность по ощутимому теплу (kW) PI: (kW) Входная мошность (двиг. вент-ра комп.+внутр.+наружн. блока)

Предостережение:

TC и SHC приведены в кВт V1/V3: 230 V [50 Hz] W1: 400 V [50 Hz]

ПРИМЕЧАНИЯ

1. Приведенные номинальные значения являются полезными мощностями.

Включено влияние нагрева двигателя вентилятора.

2. Показывает номинальные мощности
3. Значение SHC зависит от каждой EWB и EDB

SHC*= SHC поправка для другой температуры сухого термометра SHC*= 0.29 x 60 x AFR (m³/min,) x (1-BF) x (D8*-EDB)/860 Добавить SHC* к SHC если SHC > TC, то TC равно SHC

4. Допустима прямая интерполяция. Экстраполяция не допускается.

5. Мощности основаны на следующих условиях: Соответствующая длина труб с хладагентом : 7.5 m Перепад уровня : 0 m

6. Расход воздуха и ВF приведены в таблице ниже.

Модель		FUQ
71	AFR	19
/1	BF	0.07
100	AFR	29
100	BF	0.07
125	AFR	45
123	BF	0.25

Добавить следующие поправки к входной мощности каждой модели.

Модель	Подача	FUQ
71	V3	0.05
/1	W1	0
100	V3	0.05
100	W1	0
125	W1	0

6 - 2 Таблицы мощности, охлаждение

FHQ71-125B + RR71-100BV3 / RR71-100BW1

Мощность охлаждения

	Вну	/тр.		Температура наружного воздуха (°CDB)																
Наружн.	EWB	EDB		20			25			32			35			40			46	
	(°C)	(°C)	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
	12,0	18,0	6,2	4,8	1,90	6,1	4,7	2,06	5,7	4,6	2,31	5,5	4,5	2,47	5,3	4,4	2,72	4,8	4,0	2,97
	14,0	20,0	6,6	4,8	1,93	6,5	4,7	2,10	6,0	4,6	2,35	5,9	4,5	2,52	5,5	4,4	2,77	5,2	4,0	3,02
	16,0	22,0	7,2	4,9	1,96	7,0	4,8	2,13	6,5	4,7	2,39	6,3	4,6	2,56	6,0	4,5	2,82	5,4	4,1	3,07
71	18,0	25,0	7,7	5,1	2,01	7,5	4,9	2,19	7,2	4,8	2,45	6,8	4,7	2,62	6,4	4,5	2,89	5,9	4,3	3,15
''	19,0	27,0	8,0	5,2	2,03	7,7	5,1	2,21	7,3	4,9	2,47	7,1	4,7	2,65	6,6	4,6	2,92	6,1	4,4	3,18
	19,5	27,0	8,0	5,2	2,04	7,9	5,1	2,22	7,4	4,9	2,48	7,2	4,7	2,66	6,7	4,6	2,92	6,2	4,4	3,19
	22,0	30,0	8,7	5,3	2,08	8,5	5,2	2,26	8,0	5,1	2,53	7,9	4,8	2,71	7,4	4,7	2,98	6,7	4,4	3,25
	24,0	32,0	9,4	5,3	2,10	9,1	5,2	2,28	8,6	5,1	2,56	8,4	4,9	2,74	8,0	4,7	3,01	7,3	4,4	3,29
	12,0	18,0	8,2	6,8	2,60	8,1	6,7	2,88	7,9	6,5	3,25	7,6	6,4	3,43	7,3	6,0	3,81	6,6	5,7	4,27
	14,0	20,0	8,7	6,8	2,65	8,6	6,7	2,93	8,5	6,5	3,31	8,2	6,4	3,50	7,6	6,0	3,87	7,2	5,7	4,35
	16,0	22,0	9,9	6,9	2,69	9,6	6,8	2,98	8,9	6,6	3,37	8,7	6,5	3,56	8,3	6,1	3,94	7,5	5,8	4,42
100	18,0	25,0	10,6	7,2	2,76	10,3	7,1	3,05	9,6	6,7	3,45	9,4	6,6	3,64	8,8	6,4	4,04	8,1	5,9	4,53
100	19,0	27,0	10,9	7,3	2,78	10,6	7,2	3,08	9,9	6,8	3,48	9,8	6,7	3,68	9,2	6,5	4,08	8,4	6,0	4,58
	19,5	27,0	11,0	7,3	2,79	10,8	7,2	3,09	10,1	6,8	3,49	9,9	6,7	3,69	9,3	6,5	4,09	8,5	6,0	4,59
	22,0	30,0	12,0	7,4	2,85	11,6	7,3	3,16	11,0	6,9	3,56	10,8	6,8	3,77	10,2	6,7	4,17	9,3	6,3	4,68
	24,0	32,0	12,8	7,5	2,88	12,5	7,4	3,19	11,7	7,1	3,60	11,4	6,9	3,80	10,9	6,8	4,21	10,0	6,4	4,73
	12,0	18,0	11,1	9,1	3,39	10,8	8,8	3,57	10,0	8,3	3,93	9,7	8,2	4,21	9,2	8,0	4,67	8,5	7,5	5,12
	14,0	20,0	11,8	9,1	3,45	11,4	8,8	3,64	10,7	8,3	4,00	10,4	8,2	4,28	9,8	8,0	4,75	9,1	7,5	5,21
	16,0	22,0	12,7	9,2	3,51	12,1	8,9	3,70	11,4	8,4	4,07	11,1	8,3	4,36	10,4	8,1	4,84	9,6	7,6	5,31
105	18,0	25,0	13,3	9,5	3,59	13,0	9,1	3,79	12,1	8,7	4,17	11,8	8,6	4,46	11,2	8,3	4,95	10,3	7,9	5,43
125	19,0	27,0	13,6	9,6	3,63	13,3	9,1	3,83	12,7	8,8	4,21	12,2	8,6	4,51	11,5	8,4	5,00	10,7	8,0	5,49
	19,5	27,0	13,8	9,6	3,64	13,5	9,1	3,84	12,8	8,8	4,23	12,4	8,7	4,53	11,7	8,4	5,02	10,9	8,0	5,51
	22,0	30,0	15,1	9,7	3,71	14,6	9,4	3,92	13,7	9,0	4,31	13,4	8,9	4,62	12,9	8,7	5,12	11,9	8,2	5,62
	24,0	32,0	15,9	9,8	3,75	15,5	9,5	3,96	14,6	9,1	4,35	14,3	9,0	4,66	13,6	8,8	5,17	12,8	8,5	5,67

СИМВОЛЫ

FR: Расход воздуха [м³/мин.]

BF: Коэффициент байпаса

EWB: Темп. смоч. термом. на входе [°CWB] EDB: Темп. сух. термом. на входе [°CDB]

DB*: Темп. сух. термом. [°CDB]

TC: Общая мощность охлаждения [кВт] SHC: Ощутимая мощность обогрева [кВт]

PI: Входная мощность (Компр. + внутр. + наружн. двигатель вентилятора) [кВт]

ВНИМАНИЕ

TC и SHC приведены в кВт. V1/V3: 230 В [50 Гц] W1: 400 В [50 Гц]

ПРИМЕЧАНИЯ

- Приведенные номинальные значения являются полезными мощностями. Включено влияние нагрева двигателя вентилятора.
- 2 показаны номинальные мощности.
- Значение SHC зависит от каждой EWB и EDB.
 SHC* = SHC поправка для другой температуры сухого термометра.
 - = 0,29 x 60 x AFR [м3/мин.] x (1-BF) x (DB*-EDB)/860 Добавить SHC* к SHC если SHC > TC, то TC = SHC.
- Допустима прямая интерполяция. Экстраполяция не допускается.
- 5 Мощности основаны на следующих условиях. Соответствующая длина труб с хладагентом: 7,5 м Перепад уровня: 0 м
- Расход воздуха и ВF приведены в таблице ниже.

Модель		FHQ
71	AFR	17
/ 1	BF	0,1
100	AFR	24
100	BF	0,14
125	AFR	30
123	BF	0,13

Добавить следующие поправки к входной мощности каждой модели.

Модель		FHQ
71	V3	0,05
/1	W1	0
100	V3	0,07
100	W1	0
125	W1	0

3TW26372-3

6 - 2Таблицы мощности, охлаждение

Таблица мощностей охлаждения FCQ71-125C7VEB+ RR71-100B8V3B RR71-125B8W1B

	Вну	тр.		Температура наружного воздуха (°CDB)																
Наружн.	EWB	EDB		20			25			32			35			40			46	
	(°C)	(°C)	TC	SHC	Pl	TC	SHC	Pl	TC	SHC	Pl	TC	SHC	Pl	TC	SHC	Pl	TC	SHC	PI
	12.0	18.0	6.2	5.0	1.90	6.1	4.9	2.07	5.7	4.8	2.32	5.5	4.7	2.48	5.3	4.6	2.73	4.8	4.2	2.98
	14.0	20.0	6.6	5.0	1.94	6.5	4.9	2.11	6.0	4.8	2.36	5.9	4.7	2.53	5.5	4.6	2.78	5.2	4.2	3.03
II	16.0	22.0	7.2	5.1	1.97	7.0	5.0	2.14	6.5	4.9	2.40	6.3	4.8	2.57	6.0	4.7	2.83	5.4	4.3	3.09
71	18.0	25.0	7.7	5.3	2.02	7.5	5.1	2.19	7.2	5.0	2.46	6.8	4.9	2.63	6.4	4.7	2.90	5.9	4.5	3.16
	19.0	27.0	8.0	5.4	2.04	7.7	5.3	2.22	7.3	5.1	2.48	7.1	4.9	2.66	6.6	4.8	2.93	6.1	4.6	3.19
	19.5	27.0	8.0	5.4	2.05	7.9	5.3	2.22	7.4	5.1	2.49	7.2	4.9	2.67	6.7	4.8	2.94	6.2	4.6	3.20
	22.0	30.0	8.7	5.5	2.09	8.5	5.4	2.27	8.0	5.3	2.54	7.9	5.0	2.72	7.4	4.9	2.99	6.7	4.6	3.27
	24.0	32.0	9.4	5.5	2.11	9.1	5.4	2.29	8.6	5.3	2.57	8.4	5.1	2.75	8.0	4.9	3.02	7.3	4.6	3.30
	100	100		7.5	0.54	0.0		0.70	0.4	7.0	0.44	7.0	1 74	0.00	7.5	0.7	0.00	0.0		110
ll.	12.0 14.0	18.0	8.4	7.5 7.5	2.51	8.3	7.4	2.78	8.1	7.2	3.14	7.8	7.1	3.32	7.5	6.7 6.7	3.68	6.8	6.4	4.13
	16.0	20.0 22.0	8.9 10.1	7.6	2.56	8.8 9.8	7.4 7.5	2.83	8.7	7.2	3.20 3.26	8.4 8.9	7.1 7.2	3.38	7.8 8.5	6.8	3.75 3.81	7.4 7.7	6.4 6.5	4.20 4.28
100	18.0	25.0	10.1	7.9	2.60	10.5	7.5	2.88 2.95	9.1 9.8	7.3 7.4	3.20	9.6	7.3	3.44 3.52	9.0	7.1	3.91	8.3	6.6	4.28
100	19.0	27.0	11.1	8.0	2.69	10.5	7.8	1	10.1	7.5	3.33	10.0	7.4	3.56	9.4	7.2	3.94	8.6	6.7	4.43
			1					2.98												
	19.5	27.0	11.2	8.0	2.70	11.0	7.9	2.99	10.3	7.5	3.38	10.1	7.4	3.57	9.5	7.2	3.96	8.7	6.7	4.44 4.53
	22.0 24.0	30.0 32.0	12.2 13.0	8.1 8.2	2.76 2.78	11.8 12.7	8.0 8.1	3.05 3.08	11.2 11.9	7.6 7.8	3.45 3.48	11.0 11.6	7.5 7.6	3.64 3.68	10.4	7.4 7.5	4.04 4.08	9.5 10.2	7.0 7.1	4.53
	24.0	32.0	13.0	0.2	2.70	12.7	8.1	3.06	11.9	/.8	3.46	11.0	7.0	3.00	11.1	1.0	4.06	10.2	/.1	4.57
	12.0	18.0	11.4	9.5	3.50	11.1	9.2	3.69	10.3	8.7	4.06	10.0	8.6	4.35	9.5	8.4	4.83	8.8	7.9	5.29
	14.0	20.0	12.1	9.5	3.56	11.7	9.2	3.76	11.0	8.7	4.14	10.7	8.6	4.43	10.1	8.4	4.91	9.4	7.9	5.39
	16.0	22.0	13.0	9.6	3.63	12.4	9.3	3.82	11.7	8.8	4.21	11.4	8.7	4.50	10.7	8.5	5.00	9.9	8.0	5.48
125	18.0	25.0	13.6	9.9	3.71	13.3	9.5	3.92	12.4	9.1	4.31	12.1	9.0	4.61	11.5	8.7	5.12	10.6	8.3	5.61
-	19.0	27.0	13.9	10.0	3.75	13.6	9.5	3.95	13.0	9.2	4.35	12.5	9.0	4.66	11.8	8.8	5.17	11.0	8.4	5.67
	19.5	27.0	14.1	10.0	3.76	13.8	9.5	3.97	13.1	9.2	4.37	12.7	9.1	4.68	12.0	8.8	5.19	11.2	8.4	5.69
	22.0	30.0	15.4	10.1	3.84	14.9	9.8	4.05	14.0	9.4	4.46	13.7	9.3	4.77	13.2	9.1	5.29	12.2	8.6	5.80
	24.0	32.0	16.2	10.2	3.88	15.8	9.9	4.09	14.9	9.5	4.50	14.6	9.4	4.82	13.9	9.2	5.34	13.1	8.9	5.86
1,		02.0	1		3.00		0.0		1 . 1.0	1 5.0	,	1 . 1.0	1 4.1	,			1 5.01		1 5.0	

2

3

4

5

6

7

(kW)

3D057260

5 m

ОБОЗНАЧЕНИЯ

AFR: Расход воздуха (m^3/min) BF: Коэффициент байпаса EWB: Темп. смоч. термом. на входе (°CWB) EDB: Темп. сух. термом. на входе (°CDB) DB*: Темп. сух. Термом (°CDB) TC. Общая мощность (kW) SHC: Мощность по ощутимому теплу (kW) PI: Входная мощность (Комп. + двигатель вентил. внутр. +

Предостережение

ТС и SHC приведены в кВт 230V (50Hz) W1: 400V (50Hz)

ПРИМЕЧАНИЯ

Приведенные номинальные значения являются полезными мощностями, включающими снижение из-за нагрева двигателя вентилятора внутреннего блока

Показывает номинальные мощности

Значение SHC зависит от каждой EWB и EDB SHC*= SHC поправка для другой температуры сухого

 $= 0.29 \times 60 \times AFR \text{ [m}^3/\text{min.]} \times (1-BF) \times (DB*-EDB)/860$ Добавить SHC* κ SHC если SHC > TC, то TC равно SHC

Допустима прямая интерполяция. Экстраполяция не допускается.

Мощности основаны на следующих условиях: Соответствующая длина труб с хладагентом:

Перепад уровня:

Расход воздуха (AFR) и коэффициент байпаса (BF) приведены в таблице ниже.

Модель		FCQ
71	AFR	15.5
/1	BF	0.19
100	AFR	23.5
100	BF	0.16
125	AFR	27.5
123	BF	0.19

Добавить следующие поправки к входной мощности каждой модели.

Модель	Подача	FCQ
71	V3	0.06
/ 1	W1	0
100	V3	0.27
100	W1	0
125	W1	0

6 - 2 Таблицы мощности, охлаждение

FBQ71-125B + RR71-100BV3/RR71-125BW1

Таблица мощностей охлаждения

	Вну	тр.							Тем	перату	ра нару	жного в	оздуха	°CDB)						
Наружн.	EWB	EDB		20			25			32			35			40			46	
	(°C)	(°C)	TC	SHC	Pl	TC	SHC	Pl	TC	SHC	PI	TC	SHC	Pl	TC	SHC	Pl	TC	SHC	Pl
	12.0	18.0	6.2	4.8	1.92	6.1	4.7	2.08	5.7	4.6	2.33	5.5	4.5	2.50	5.3	4.4	2.75	4.8	4.0	3.00
	14.0	20.0	6.6	4.8	1.95	6.5	4.7	2.12	6.0	4.6	2.38	5.9	4.5	2.55	5.5	4.4	2.80	5.2	4.0	3.06
İ	16.0	22.0	7.2	4.9	1.99	7.0	4.8	2.16	6.5	4.7	2.42	6.3	4.6	2.59	6.0	4.5	2.85	5.4	4.1	3.11
71	18.0	25.0	7.7	5.1	2.03	7.5	4.9	2.21	7.2	4.8	2.48	6.8	4.7	2.65	6.4	4.5	2.92	5.9	4.3	3.18
	19.0	27.0	8.0	5.2	2.05	7.7	5.1	2.23	7.3	4.9	2.50	7.1	4.7	2.68	6.6	4.6	2.95	6.1	4.4	3.22
	19.5	27.0	8.0	5.2	2.06	7.9	5.1	2.24	7.4	4.9	2.51	7.2	4.7	2.69	6.7	4.6	2.96	6.2	4.4	3.23
	22.0	30.0	8.7	5.3	2.10	8.5	5.2	2.29	8.0	5.1	2.56	7.9	4.8	2.74	7.4	4.7	3.02	6.7	4.4	3.29
L	24.0	32.0	9.4	5.3	2.12	9.1	5.2	2.31	8.6	5.1	2.58	8.4	4.9	2.77	8.0	4.7	3.05	7.3	4.4	3.32
	12.0	18.0	8.4	7.0	2.54	8.3	6.9	2.82	8.1	6.7	3.18	7.8	6.6	3.36	7.5	6.2	3.72	6.8	5.9	4.18
	14.0	20.0	8.9	7.0	2.59	8.8	6.9	2.87	8.7	6.7	3.24	8.4	6.6	3.42	7.8	6.2	3.79	7.4	5.9	4.16
	16.0	22.0	10.1	7.1	2.63	9.8	7.0	2.92	9.1	6.8	3.29	8.9	6.7	3.48	8.5	6.3	3.86	7.7	6.0	4.33
100	18.0	25.0	10.8	7.4	2.70	10.5	7.3	2.99	9.8	6.9	3.37	9.6	6.8	3.56	9.0	6.6	3.95	8.3	6.1	4.43
100	19.0	27.0	11.1	7.5	2.72	10.8	7.4	3.02	10.1	7.0	3.41	10.0	6.9	3.60	9.4	6.7	3.99	8.6	6.2	4.48
	19.5	27.0	11.2	7.5	2.73	11.0	7.4	3.03	10.3	7.0	3.42	10.1	6.9	3.61	9.5	6.7	4.00	8.7	6.2	4.49
	22.0	30.0	12.2	7.6	2.79	11.8	7.5	3.09	11.2	7.1	3.48	11.0	7.0	3.68	10.4	6.9	4.08	9.5	6.5	4.58
L	24.0	32.0	13.0	7.7	2.82	12.7	7.6	3.12	11.9	7.3	3.52	11.6	7.1	3.72	11.1	7.0	4.12	10.2	6.6	4.62
								,	·	,	<u> </u>									,
	12.0	18.0	11.1	9.1	3.51	10.8	8.8	3.70	10.0	8.3	4.07	9.7	8.2	4.36	9.2	8.0	4.84	8.5	7.5	5.30
	14.0 16.0	20.0 22.0	11.8	9.1	3.57 3.63	11.4	8.8	3.77	10.7	8.3	4.14	10.4	8.2	4.44	9.8	8.0	4.92	9.1	7.5	5.40
			12.7	9.2		12.1	8.9	3.83	11.4	8.4	4.22	11.1	8.3	4.51	10.4	8.1	5.01	9.6	7.6	5.49
125	18.0	25.0	13.3	9.5	3.72	13.0	9.1	3.92	12.1	8.7	4.32	11.8	8.6	4.62	11.2	8.3	5.13	10.3	7.9	5.63
	19.0	27.0	13.6	9.6	3.76	13.3	9.1	3.96	12.7	8.8	4.36	12.2	8.6	4.67	11.5	8.4	5.18	10.7	8.0	5.68
	19.5	27.0 30.0	13.8 15.1	9.6 9.7	3.77	13.5	9.1	3.98	12.8	8.8	4.38	12.4	8.7	4.69	11.7	8.4	5.20	10.9	8.0	5.70
	22.0 24.0	30.0	15.1 15.9	9.7	3.85 3.88	14.6 15.5	9.4 9.5	4.06	13.7	9.0	4.46	13.4	8.9	4.78	12.9	8.7	5.30	11.9	8.2	5.82
L	24.0	32.0	15.9	9.8	ა.88	10.5	9.5	4.10	14.6	9.1	4.51	14.3	9.0	4.83	13.6	8.8	5.35	12.8	8.5	5.87

3TW26372-2A

ОБОЗНАЧЕНИЯ

AFR: (m³/min)Расход воздуха Коэффициент байпаса EWB: (°CWB) Темп. смоч. термом. на входе EDB: Темп. сух. термом. на входе (°CDB) (°CDB) DB*: Темп. сух. термом. TC: Общая мощность охлаждения (kW) SHC: Мощность по ощутимому теплу (kW) PI: (kW) Входная мошность (двиг. вент-ра комп.+внутр.+наружн. блока)

Предостережение:

ТС и SHC приведены в кВт

V3: 230 V [50 Hz] W1: 400 V [50 Hz]

ПРИМЕЧАНИЯ

1. Приведенные номинальные значения являются полезными мощностями.

Включено влияние нагрева двигателя вентилятора.

2. Показывает номинальные мощности 3. Значение SHC зависит от каждой EWB и EDB

SHC*= SHC поправка для другой температуры сухого термометра SHC*= 0.29 x 60 x AFR (m³/min) x (1-BF) x (D8*-EDB)/860 Добавить SHC* к SHC если SHC > TC, то TC равно SHC

 Допустима прямая интерполяция. Экстраполяция не допускается.

5. Мощности основаны на следующих условиях: Соответствующая длина труб с хладагентом : 7.5 m Перепад уровня : 0 m

6. Расход воздуха и ВF приведены в таблице ниже.

Модель		FBQ
71	AFR	19
/1	BF	0.11
100	AFR	27
100	BF	0.2
125	AFR	35
123	BF	0.14

7. Добавить следующие поправки к входной мощности каждой модели.

Модель	Подача	FBQ
71	V3	0.11
71	W1	0
100	V3	0.19
100	W1	0
125	W1	0

6 - 2 Таблицы мощности, охлаждение

FDQ125B + RR125BW1

Таблица мощностей охлаждения

	Вну	тр.							Тем	ператур	ра нарух	жного в	оздуха (°CDB)						
Наружн.	EWB	EDB		20			25			32			35			40			46	
.,	(°C)	(°C)	TC	SHC	Pl	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	Pl
[12,0	18,0	11,4	10,7	3,60	11,1	10,4	3,79	10,3	9,9	4,18	10,0	9,8	4,47	9,5	9,6	4,96	8,8	9,1	5,44
	14,0	20,0	12,1	10,7	3,66	11,7	10,4	3,86	11,0	9,9	4,25	10,7	9,8	4,55	10,1	9,6	5,05	9,4	9,1	5,54
	16,0	22,0	13,0	10,8	3,73	12,4	10,5	3,93	11,7	10,0	4,33	11,4	9,9	4,63	10,7	9,7	5,14	9,9	9,2	5,64
125	18,0	25,0	13,6	11,1	3,82	13,3	10,7	4,02	12,4	10,3	4,43	12,1	10,2	4,74	11,5	9,9	5,26	10,6	9,5	5,77
125	19,0	27,0	13,9	11,2	3,86	13,6	10,7	4,07	13,0	10,4	4,47	12,5	10,2	4,79	11,8	10,0	5,32	11,0	9,6	5,83
ŀ	19,5	27,0	14,1	11,2	3,87	13,8	10,7	4,08	13,1	10,4	4,49	12,7	10,3	4,81	12,0	10,0	5,33	11,2	9,6	5,85
	22,0	30,0	15,4	11,3	3,95	14,9	11,0	4,16	14,0	10,6	4,58	13,7	10,5	4,90	13,2	10,3	5,44	12,2	9,8	5,97
	24,0	32,0	16,2	11,4	3,98	15,8	11,1	4,20	14,9	10,7	4,62	14,6	10,6	4,95	13,9	10,4	5,49	13,1	10,1	6,02

3TW26372-6

ОБОЗНАЧЕНИЯ

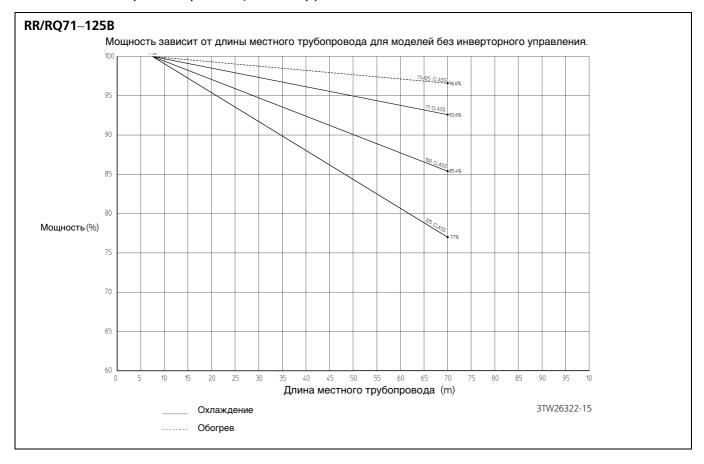
AFR:	Расход воздуха	(m ³ /min)
BF:	Коэффициент байпаса	
EWB:	Темп. смоч. термом. на входе	(°CWB)
EDB:	Темп. сух. термом. на входе	(°CDB)
DB*:	Темп. сух. термом.	(°CDB)
TC:	Общая мощность охлаждения	(kW)
SHC:	Мощность по ощутимому теплу	(kW)
PI:	Входная мощность	(kW)
	(лвиг вент-ра комп +внутр +наружн блока)	

Предостережение:

TC и SHC приведены в кВт V3: 230 V [50 Hz]

W1: 400 V [50 Hz]

ПРИМЕЧАНИЯ


1. Приведенные номинальные значения являются полезными мощностями.

Включено влияние нагрева двигателя вентилятора.

- Показывает номинальные мощности
- 3. Значение SHC зависит от каждой EWB и EDB SHC*= SHC поправка для другой температуры сухого термометра SHC* = 0.29 x 60 x AFR (m³/min.) x (1–BF) x (DB*–EDB)/860 Добавить SHC* к SHC если SHC > TC, то TC равно SHC
- 4. Допустима прямая интерполяция. Экстраполяция не допускается.
- 5. Мощности основаны на следующих условиях: Соответствующая длина труб с хладагентом : 7.5 m Перепад уровня : 0 m
- 6. Расход воздуха и ВF приведены в таблице ниже.

Моде	ПЬ		FDQ
125		AFR	45
123		BF	0.25

6 - 2 Таблицы мощности, охлаждение

6

6 - 3 Таблицы мощности, охлаждение, одновременная работа

Одновременная работа RQ71-100-125В и RR71-100-125В Мощность охлаждения

	Вну	/тр.		RQ																R	R					
Нетопи				Te	емпе	ратуј	ра на	руж	ного	возд	цуха	(°CD	B)			Te	емпе	рату	ра на	руж	ного	возд	цуха	(°CD	B)	
Наружн.	EWB	EDB	2	0	2	5	3	2	3	5	4	0	4	6	2	0	2	5	3	2	3	5	4	0	4	6
	(°C)	(°C)	TC	PI	TC	PI	TC	PI	TC	PI	тс	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
	12,0	18,0	6,2	1,80	6,1	1,95	5,7	2,19	5,5	2,34	5,3	2,58	4,9	2,81	6,2	1,80	6,1	1,95	5,7	2,19	5,5	2,34	5,3	2,58	4,9	2,81
	14,0	20,0	6,6	1,83	6,5	1,99	6,0	2,23	5,9	2,38	5,5	2,62	5,3	2,86	6,6	1,83	6,5	1,99	6,0	2,23	5,9	2,38	5,5	2,62	5,3	2,86
	16,0	22,0	7,2	1,86	7,0	2,02	6,5	2,26	6,3	2,43	6,0	2,67	5,5	2,91	7,2	1,86	7,0	2,02	6,5	2,26	6,3	2,43	6,0	2,67	5,5	2,91
71	18,0	25,0	7,7	1,91	7,5	2,07	7,2	2,32	6,8	2,48	6,4	2,73	6,0	2,98	7,7	1,91	7,5	2,07	7,2	2,32	6,8	2,48	6,4	2,73	6,0	2,98
"	19,0	27,0	8,0	1,92	7,7	2,09	7,3	2,34	7,1	2,51	6,6	2,76	6,2	3,01	8,0	1,92	7,7	2,09	7,3	2,34	7,1	251	6,6	2,76	6,2	3,01
	19,5	27,0	8,0	1,93	7,9	2,10	7,4	2,35	7,2	2,52	6,7	2,77	6,3	3,02	8,0	1,93	7,9	2,10	7,4	2,35	7,2	2,52	6,7	2,77	6,3	3,02
	22,0	30,0	8,7	1,97	8,5	2,14	8,0	2,40	7,9	2,57	7,4	2,83	6,8	3,08	8,7	1,97	8,5	2,14	8,0	2,40	7,9	2,57	7,4	2,83	6,8	3,08
	24,0	32,0	9,4	1,99	9,1	2,16	8,6	2,42	8,4	2,59	8,0	2,85	7,4	3,11	9,4	1,99	9,1	2,16	8,6	2,42	8,4	2,59	8,0	2,85	7,4	3,11
	12,0	18,0	8,4	2,53	8,3	2,80	8,1	3,16	7,8	3,34	7,5	3,70	6,8	4,15	8,4	2,53	8,3	2,80	8,1	3,16	7,8	3,34	7,5	3,70	6,8	4,15
	14,0	20,0	8,9	2,57	8,8	2,85	8,7	3,22	8,4	3,40	7,8	3,77	7,4	4,23	8,9	2,57	8,8	2,85	8,7	3,22	8,4	3,40	7,8	3,77	7,4	4,23
	16,0	22,0	10,1	2,62	9,8	2,90	9,1	3,27	8,9	3,46	8,5	3,83	7,7	4,30	10,1	2,62	9,8	2,90	9,1	3,27	8,9	3,46	8,5	3,83	7,7	4,30
100	18,0	25,0	10,8	2,68	10,5	2,97	9,8	3,35	9,6	3,54	9,0	3,93	8,3	4,41	10,8	2,68	10,5	2,97	9,8	3,35	9,6	3,54	9,0	3,93	8,3	4,41
100	19,0	27,0	11,1	2,71	10,8	3,00	10,1	3,39	10,0	3,58	9,4	3,97	8,6	4,45	11,1	2,71	10,8	3,00	10,1	3,39	10,0	3,58	9,4	3,97	8,6	4,45
	19,5	27,0	11,2	2,72	11,0	3,01	10,3	3,40	10,1	3,59	9,5	3,98	8,7	4,47	11,2	2,72	11,0	3,01	10,3	3,40	10,1	3,59	9,5	3,98	8,7	4,47
	22,0	30,0	12,2	2,77	11,8	3,07	11,2	3,47	11,0	3,66	10,4	4,06	9,5	4,55	12,2	2,77	11,8	3,07	11,2	3,47	11,0	3,66	10,4	4,06	9,5	4,55
	24,0	32,0	13,0	2,80	12,7	3,10	11,9	3,50	11,6	3,70	11,1	4,10	10,2	4,60	13,0	2,80	12,7	3,10	11,9	3,50	11,6	3,70	11,1	4,10	10,2	4,60
	12,0	18,0	11,1	3,37	10,8	3,55	10,0	3,91	9,7	4,18	9,2	4,64	8,5	5,09	11,1	3,37	10,8	3,55	10,0	3,91	9,7	4,18	9,2	4,64	8,5	5,09
	14,0	20,0	11,8	3,43	11,4	3,61	10,7	3,98	10,4	4,26	9,8	4,72	9,1	5,18	11,8	3,43	11,4	3,61	10,7	3,98	10,4	4,26	9,8	4,72	9,1	5,18
	16,0	22,0	12,7	3,49	12,1	3,68	11,4	4,05	11,1	4,33	10,4	4,81	9,6	5,27	12,7	3,49	12,1	3,68	11,4	4,05	11,1	4,33	10,4	4,81	9,6	5,27
125	18,0	25,0	13,3	3,57	13,0	3,76	12,1	4,14	11,8	4,44	11,2	4,92	10,3	5,40	13,3	3,57	13,0	3,76	12,1	4,14	11,8	4,44	11,2	4,92	10,3	5,40
	19,0	27,0	13,6	3,61	13,3	3,80	12,7	4,19	12,2	4,48	11,5	4,97	10,7	5,45	13,6	3,61	13,3	3,80	12,7	4,19	12,2	4,48	11,5	4,97	10,7	5,45
	19,5	27,0	13,8	3,62	13,5	3,81	12,8	4,20	12,4	4,49	11,7	4,99	10,9	5,47	13,8	3,62	13,5	3,81	12,8	4,20	12,4	4,49	11,7	4,99	10,9	5,47
	22,0	30,0	15,1	3,69	14,6	3,89	13,7	4,28	13,4	4,58	12,9	5,09	11,9	5,58	15,1	3,69	14,6	3,89	13,7	4,28	13,4	4,58	12,9	5,09	11,9	5,58
	24,0	32,0	15,9	3,73	15,5	3,93	14,6	4,32	14,3	4,63	13,6	5,14	12,8	5,63	15,9	3,73	15,5	3,93	14,6	4,32	14,3	4,63	13,6	5,14	12,8	5,63

символы

EWB: Темп. смоч. термом. на входе [°CWB]

EDB: Темп. сух. термом. на входе [°CDB]

ТС: Общая мощность обогрева [кВт]

PI о: Входная мощность наружного блока [кВт]

PI corr1: Поправочный коэффициент для PI в зависимости от напряжения наружного блока [кВт]

PI corr2: Поправочный коэффициент для PI в зависимости от используемых внутренних блоков [кВт]

РІ: Общая входная мощность [кВт]

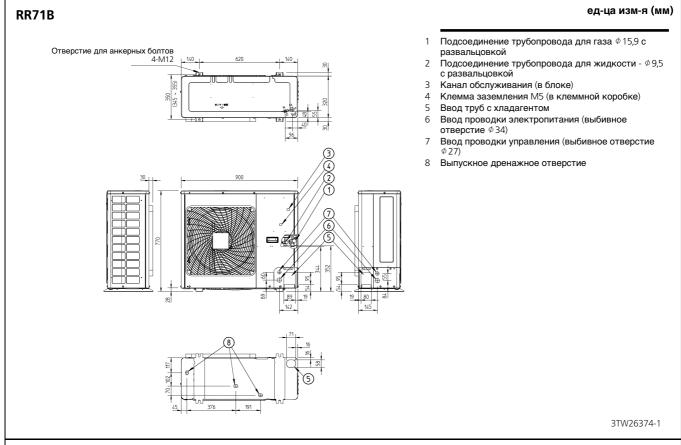
PI = PI o + PI corr1 + I PI corr2 напр. RQ100BV3 + FBQ71B + FHQ35B PI = 3,58 + 0,27 + 0,21 + 0,14 = 4,2 кВт

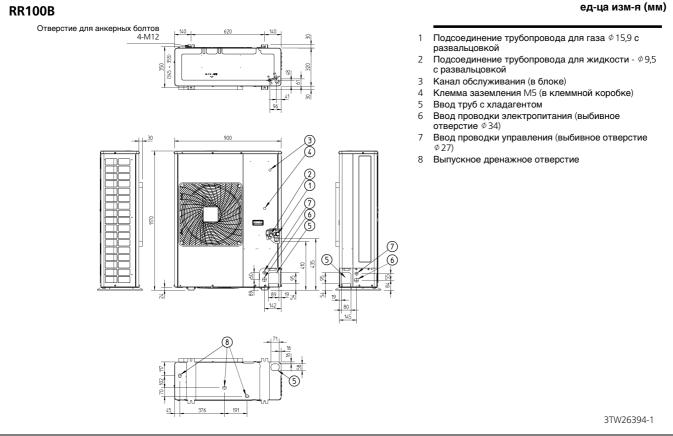
ПРИМЕЧАНИЯ

- Приведенные номинальные значения являются полезными мощностями, включающими снижение из-за нагрева двигателя вентилятора внутреннего блока.
- 2 показаны номинальные мощности.
- 3 Мощности основаны на следующих условиях. Соответствующая длина труб с хладагентом: 7,5 м Перепад уровня: 0 м
- Допустима прямая интерполяция. Экстраполяция не допускается.
- 5 Добавьте следующую поправку к входной мощности для различных внутренних блоков (PI corr1).

Наружная	Электропитание							
модель	V3	W1						
RQ71	0,12	0						
RQ100	0,27	0						
RR71	0,12	0						
RR100	0,27	0						

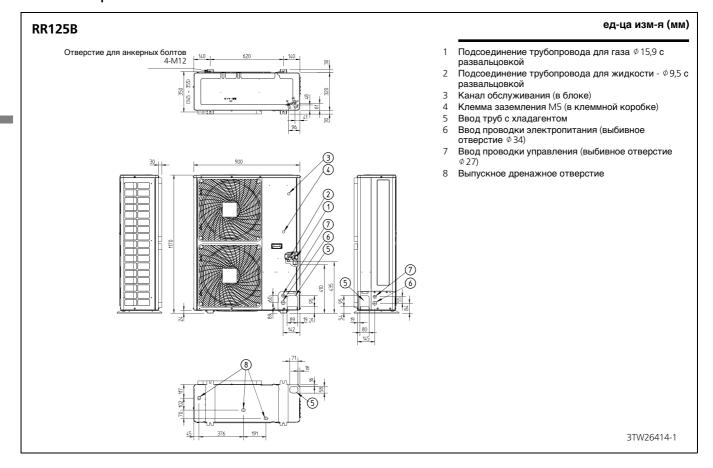
6 Добавьте следующую поправку к входной мощности для каждого подсоединяемого внутреннего блока (PI corr2).


Внутрення		Типы внутренних моделей													
я модель	FBQ	FHQ	FFQ	FCQ	FAQ	FUQ									
35	0,12	0,14	0,08	0,14	-										
50	0,16	0,14	0,09	0,14	-										
60	0,21	0,14	0,11	0,16	-	-									
71	0,21	0,14	-	0,16	0,069	0,16									


7 Полная мощность не изменяется при различных комбинациях внутренних блоков.

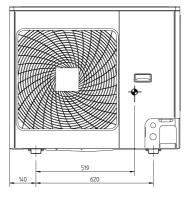
3TW26322-13

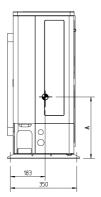
7 Чертеж в масштабе и центр тяжести


7 - 1 Чертеж в масштабе

7 Чертеж в масштабе и центр тяжести

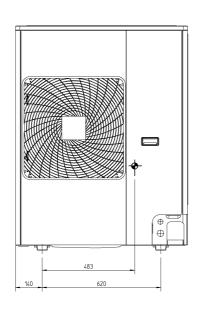
7 - 1 Чертеж в масштабе

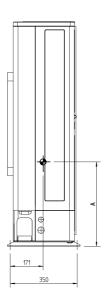



7

7 Чертеж в масштабе и центр тяжести

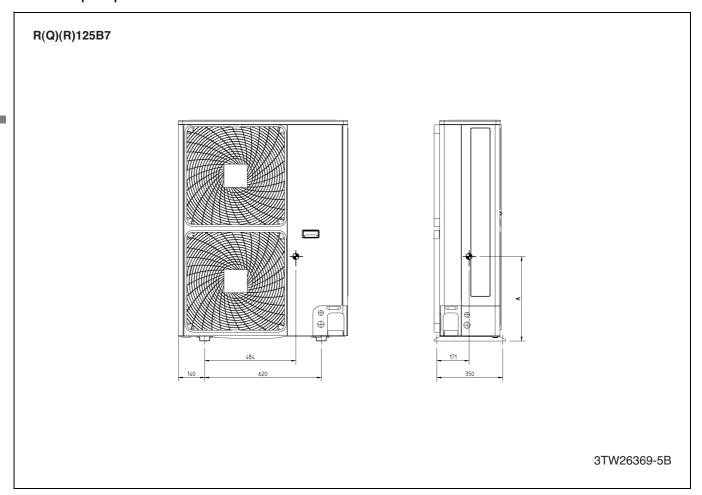
7 - 2 Центр тяжести


R(Q)(R)71B7

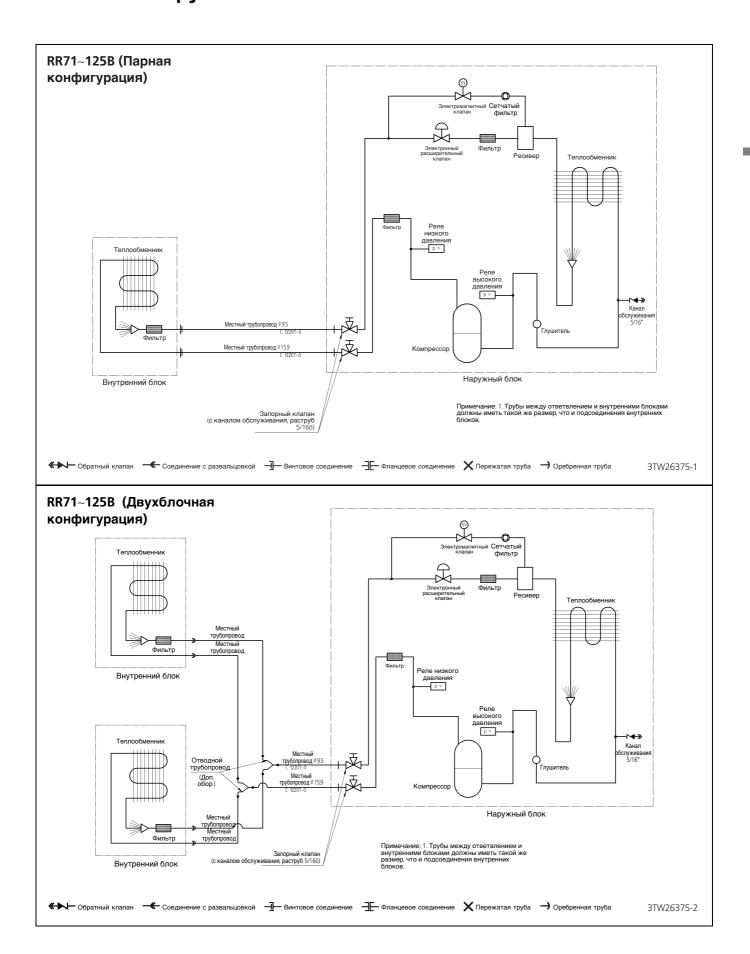


3TW26329-5B

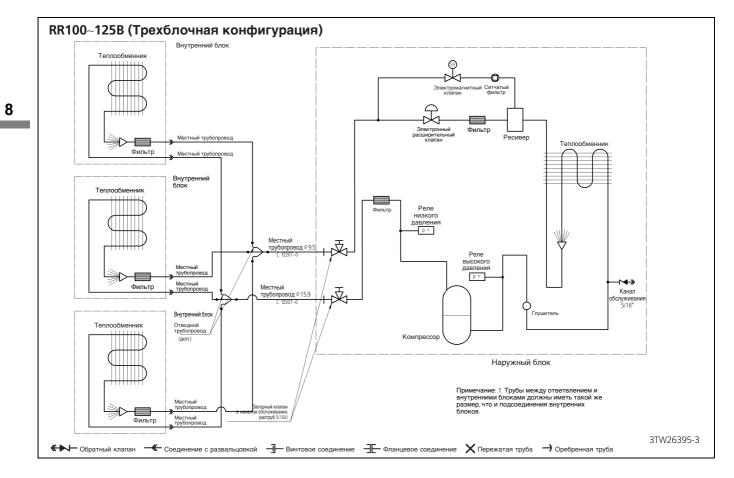
R(Q)(R)100B7



3TW26349-5B


7 Чертеж в масштабе и центр тяжести

7 - 2 Центр тяжести



7

8 Схема трубной обвязки

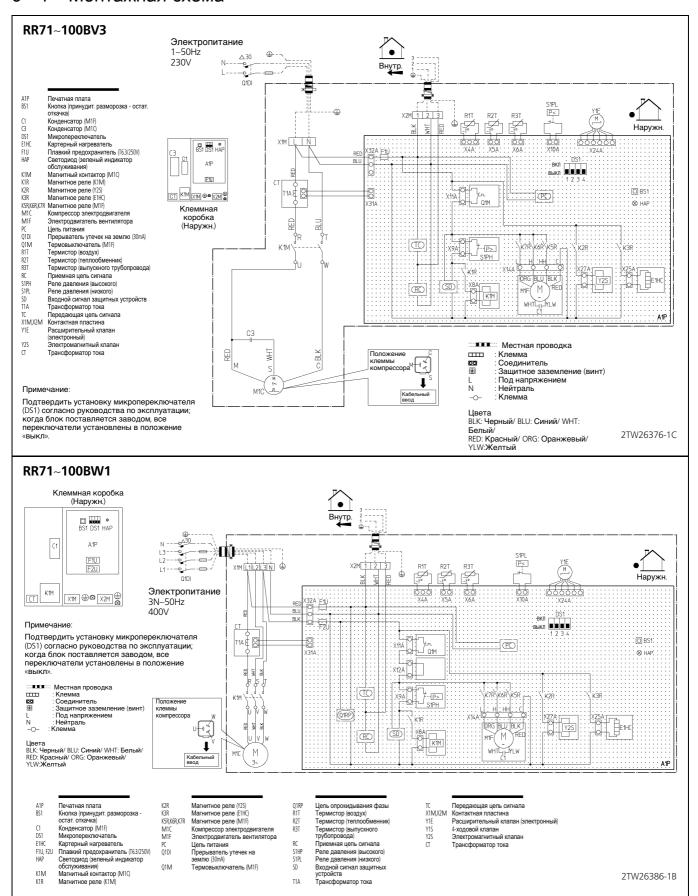
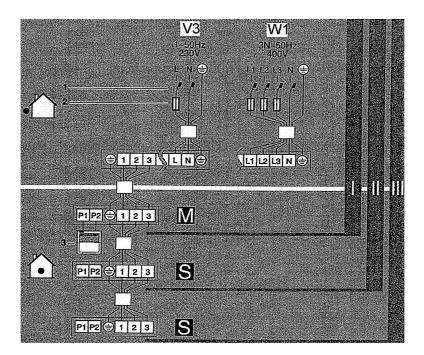


Схема трубной обвязки 8


9 Монтажная схема

9 - 1 Монтажная схема

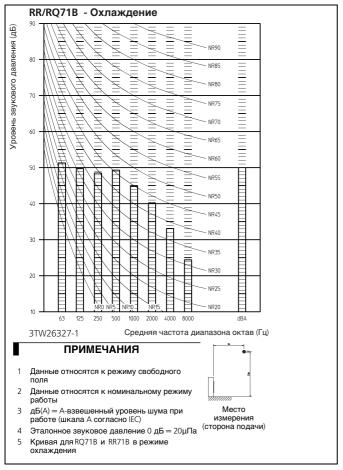
9 Монтажная схема

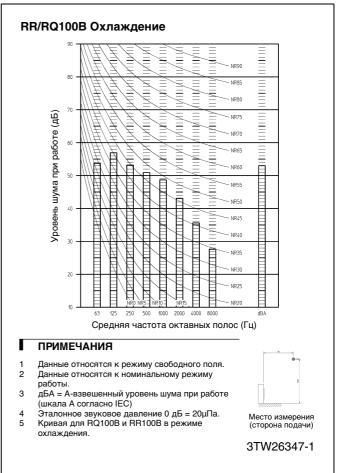

9 - 1 Монтажная схема

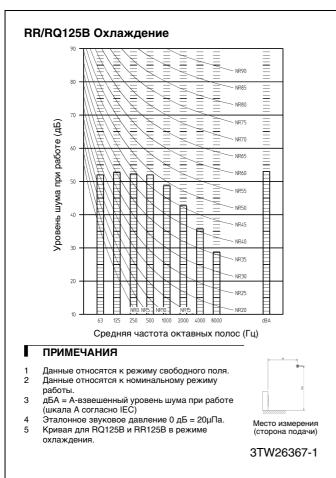
9 Монтажная схема

9 - 2 Схема внешних соединений

R(Q)(R)71-125B

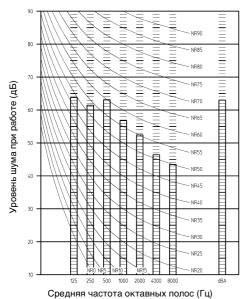

- I Парная конфигурация
- II Двухблочная конфигурация
- III Трехблочная конфигурация
- М Главный


- S Подчиненный
- 1 Детектор утечки на землю
- 2 Плавкий предохранитель
- 3 Контроллер дистанционного управления


4TW26329-7

10 Данные по шуму

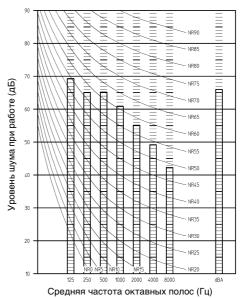
10 - 1 Спектр звукового давления



10 Данные по шуму

10 - 2 Спектр звуковой мощности

RR/RQ71B Охлаждение

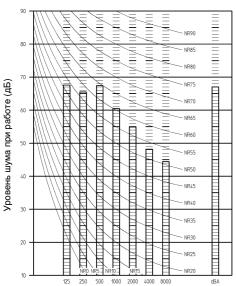


ПРИМЕЧАНИЯ

- 1 Данные относятся к режиму свободного поля.
- 2 Данные относятся к номинальному режиму работы.
- 3 дБА = А-взвешенный уровень шума при работе (шкала А согласно IEC)
- 4 Эталонное звуковое давление 0 дБ = 20μПа.
- 5 Кривая для RQ100B и RR100B в режиме охлаждения.

3TW26327-3

RR/RQ100B Охлаждение



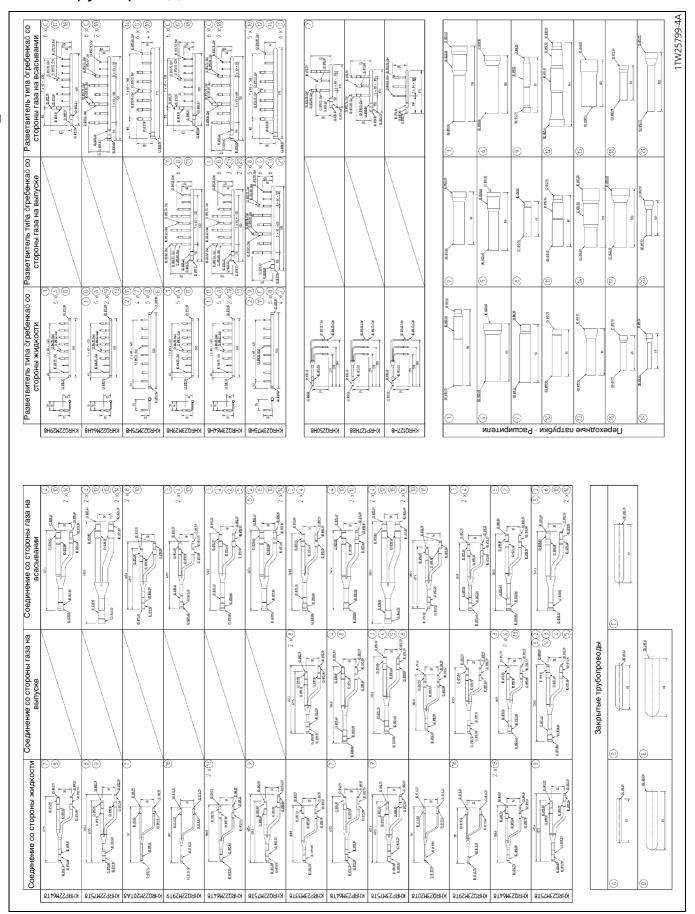
ПРИМЕЧАНИЯ

- 1 Данные относятся к режиму свободного поля.
- 2 Данные относятся к номинальному режиму работы.
- 3 дБА = А-взвешенный уровень шума при работе (шкала А согласно IEC)
- 4 Эталонное звуковое давление 0 дБ = 20μПа.
- 5 Кривая для RQ100B и RR100B в режиме охлаждения.

3TW26347-3

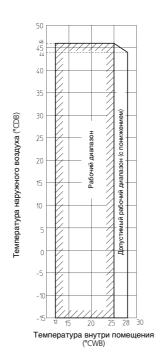
RR/RQ125B Охлаждение

Средняя частота октавных полос (Гц)


ПРИМЕЧАНИЯ

- 1 Данные относятся к режиму свободного поля.
- 2 Данные относятся к номинальному режиму работы.
- 3 дБА = А-взвешенный уровень шума при работе (шкала А согласно IEC)
- 4 Эталонное звуковое давление 0 дБ = 20μПа.
- 5 Кривая для RQ125B и RR125B в режиме охлаждения.

3TW26367-3


11 Установка

11 - 1 Трубопроводные системы Refnet

12 Рабочий диапазон

RR71~125B

	Название модели												
	RR71BV3 RR100BV3 RR125BW1												
RR71B71 RR100BW1													

Примечания:

- В зависимости от условий эксплуатации и монтажа, внутренний блок может переключаться в режим ледостава (внутреннего льдоудаления).
- Для уменьшения частоты работы в режиме ледостава (внутреннего льдоудаления) рекомендуется установить наружный блок в месте, не подверженном воздействию ветра.

3TW26373-1