- Наружные блоки для применения в составе сплит -систем
- Наружные блоки Daikin представляют собой изящные и прочные устройства, которые легко монтируются на крыше или террасе или просто размещаются на наружной стене дома.
- Наружные блоки оснащены компрессорами с "плавающим" ротором, которые отличаются низким уровнем шума и высокой эффективностью.

производ	ИНАЛЬНАЏ ЦИТЕЛЬНОСТ ЬНАЏ ПОТРЕ		ļ	RYN50E3V1B	RYN60E3V1B			
Для комбинации: внутренние блоки + наружные блоки	Внутренние бл	оки		FTYN50EV1B	FTYN60EV1B			
Охлаждение				5.0	6.0			
Обогрев	Standard	kW		5.8	7.0			
Power Input	Охлаждение	ение Стандарт кВ ный		1.55	1.99			
· L	Нагрев	Стандарт кВт ный		1.60	2.04			
Для	EER	Охлажден	ие	3.23	3.02			
комбинации:	COP	Обогрев		3.63	3.43			
внутренние	Energy Label	Охлажден	ие	A	В			
блоки + наружные		Обогрев		A	В			
блоки	Годовое потре энергии	бление	kWh	775	995			
	Внутренние бл	ЮКИ	•	FTYN50FV1B	FTYN60FV1B			
Охлаждение	Standard kW			5.0	6.0			
Обогрев	Standard	kW		5.8	7.0			

2 Технические характеристики

производ	РОИЗВОДИТЕЛЬНОСТЬ И ОМИНАЛЬНАЏ ПОТРЕБЛЏЕМАЏ ОЩНОСТЬ			RYN50E3V1B	RYN60E3V1B
Power Input	Input Охлаждение Стандарт кВт ный		кВт	1.55	1.99
	Нагрев	Стандарт кВт ный		1.60	2.04
Для	EER	Охлажден	ие	3.23	3.02
комбинации:	COP	Обогрев		3.63	3.43
внутренние	Energy Label	Охлажден	ие	A	В
блоки + наружные		Обогрев		A	В
блоки	Годовое потребление kWh энергии			775	995

2-2 TEXHI	ИчЕСКИЕ										
XAPAKTEP	ІСТИКИ			RYN50E3V1B	RYN60E3V1B						
Корпус	Цвет			lvor	y White						
Размеры	Блок	Высота	ММ	735	735						
		Ширина	ММ	825	825						
		Глубина	ММ	300	300						
	Упаковка	Высота	ММ	797	797						
		Ширина	ММ	960	960						
		Глубина	ММ	390	390						
Bec	Вес установки	•	КГ	48	48						
	Масса брутто		КГ	53	53						
Теплообменн	Размеры	Длина	ММ	845	845						
ик		К-во рядов	3	2	2						
		Шаг оребрени я	ММ	1.80	1.80						
		К-во секци	й	32	32						
	Трубного типа			Hi-Xa(8)							
	Ребро	Тип		Штампованная пластина							
		Обработка	ì	Anti-corrosio	n treatment (PE)						
Вентилятор	Тип			Pro	ppeller						
	Количество			1	1						
	Расход воздуха	Охлажде ние	м3/мин	48.9	50.9						
	(номинальный)	Нагрев	м ³ /мин	45.0	46.3						
	Двигатель	Количество		1	1						
		Модель		KFD-3	880-50-8A						
Двигатель	Скорость (номинальная	Охлажде ние	об/мин	780	810						
	при 230 В)	Нагрев	об/мин	720	740						
Вентилятор	Двигатель	Произво дительно сть	Вт	53	53						
Компрессор	Количество			1	1						
	Двигатель	Модель		2YC3	6BXD#A						
		Тип		Hermetically seal	ed swing compressor						
		Мощност Вт ь двигател		1100	1100						
Рабочий	Охлаждение	я Мин.	°CDB	-10.0	-10.0						
диапазон	272.00.00	Макс.	°CDB	46.0	46.0						
дианазон	Нагрев	Мин.	°CWB	-15	-15						

2

Технические характеристики

2-2 TEXHI XAPAKTEPI	1чЕСКИЕ ІСТИКИ			RYN50E3V1B	RYN60E3V1B				
Уровень шума (номинальный)	Охлаждение	Уровень звуковой мощност и	дБ(А)	61.0	63.0				
		Уровень звуковог о давления	дБ(А)	47.0	49.0				
	Нагрев	Уровень звуковог о давления	дБ(А)	48.0	49.0				
Хладагент	Тип	1111	l	R-4	10A				
	Заправка		КГ	1.5	1.5				
Масло в	Тип			FVC	550K				
контуре хладагента	Объем заправк	И	Л	0.65	065				
Подсоединени е труб	Жидкость (OD)	Диаметр (OD)	ММ	6.35	6.35				
	Газ	Диаметр (OD)	ММ	12.7	12.7				
	Дренаж	Диаметр (OD)	ММ	18	18				
	Длина трубопроводо в	Максима льный	М	30	30				
	Дополнительнь хладагента	ій объем	кг/м	0.02/2	>10m				
	Максимальный высот между внублоками		М	20.0	20.0				
	Тепловая изоля	яция		Both liquid at	nd gas pipes				
Стандартные	Элемент			Drain	n plug				
принадлежнос	Количество			1	1				
ТИ	Элемент			Installatio	n manual				
	Количество			1	1				
Примечания				Nominal cooling capacities are based on : indoor temperat equivalent refrigerant piping					
		Nominal heating capacities are based on: indoor temperat ure: 200CDB, outdoor temperat ure: 70CDB, 60CWB, equivalen t refrigeran t piping: 7.5m, level difference: 0m							

Технические характеристики

2-2 ТЕХНИЧЕСКИЕ		
ХАРАКТЕРИСТИКИ	RYN50E3V1B	RYN60E3V1B
Sound		
levels are		
measured		
in an		
anechoic		
room		
Sound		
pressure		
level is a		
relative		
value,		
dependin		
g on the		
distance		
and		
acoustic		
environm		
ent. For		
more		
details,		
please		
refer to		
sound		
level		
drawings		
of this		
chapter.		
The		
sound		
power		
level is an		
absolute		
value		
indicating		
the power		
which a		
sound		
source		
generates		

2-3 ЭЛЕК ^Т ХАРАКТЕРИ	ГРИЧЕСКИЕ ИСТИКИ			RYN50E3V1B	RYN60E3V1B
Электропитан	Наименование			TTHOOLSVID	in the second se
ие	Фаза			1	1
	Частота		Гц	50	50
	Напряжение В			220	-240
	Диапазон напряжений	Минимал ьный	В	-1(0%
		Максима льный	В	+1	0%
Ток	Номинальный рабочий ток	Cooling (A)	Α	6.75	8.62
(F	(RLA)	Heating (A)	Α	6.94	8.80
	Пусковой ток (охлаждение/на	агрев)	Α	7.1	9.0
	Zmax			No requ	irements

2 Технические характеристики

2-3 ЭЛЕКТ ХАРАКТЕРИ			RYN50E3V1B	RYN60E3V1B					
Проводные соединения	Для подачи электропитан ия	Количество	3	3					
	Для	Количество	4	4					
	подсоединени я к внутренним блокам	Замечание	Including e	earth wiring					
Электропитание	е		Outdoor unit only						

Характеристики

4 Электрические параметры

Внутренний блок	Наружный блок		Электропитание			Компр	ессор	OFM		IFM	
онутренний олок	паружный олок	Hz-Volts	Диапазон напряжений	MCA	MFA	RHz	RLA	W	FLA	W	FLA
	RYN50E3V1B	50 - 220		19.75	20	67	6.7			43	
FTYN50FV1B		50 - 230	Макс. 50Hz 264V Мин. 50Hz 198V				6.4	53	0.27		0.16
		50 - 240					6.1				
		50 - 220					8.7				
FTYN60FV1B	RYN60E3V1B	50 - 230	Макс. 50Hz 264V Мин. 50Hz 198V	19.75	20	84	8.3	53	0.32	43	0.16
		50 - 240					7.9				

3D040875D

ОБОЗНАЧЕНИЯ

МСА : Мин. ток цепи (А)

MFA : Макс. ток предохранителя (A) RHz : Номинальная рабочая частота (Hz) RLA : Ток номинальной нагрузки (A)

OFM : Двигатель вентилятора наружного блока IFM : Двигатель вентилятора внутреннего блока

FLA : Ток полной нагрузки

W : Номинальная выходная мощность двигателя

(BT)

ПРИМЕЧАНИЯ

1. RLA основан на следующих условиях:

Темп. в пом. 27°CDB/19,0°CWB

Температура наружного воздуха : 35°CDB

- 2. Максимально допустимый разбаланс напряжений между фазами составляет 2%
- 3. Диаметр проводов выбирается по большему значению МСА.
- 4. Вместо плавкого предохранителя пользуйтесь автоматическим выключателем.

Таблицы мощности

5

5 - 1 Таблицы мощности охлаждение/обогрев

FTYN5	0F+RY	N50E	N50E AFR 14.7																
Охлаж	дение	•														BF			1.28
Вну	тр.		Температура наружного воздуха (°CDB)																
EWB	EDB		20			25			30			32			35		40		
(°C)	(°C)	TC	SHC	PI	TC	SHC	Pl	TC	SHC	PI									
14.0	20	5.12	3.61	1.19	4.89	3.49	1.30	4.66	3.37	1.42	4.56	3.32	1.46	4.42	3.25	1.53	4.19	3.13	1.65
16.0	22	5.35	3.55	1.20	5.12	3.43	1.31	4.89	3.32	1.43	4.79	3.27	1.47	4.65	3.21	1.54	4.42	3.10	1.65
18.0	25	5.58	3.69	1.20	5.35	3.58	1.32	5.12	3.47	1.43	5.02	3.43	1.48	4.88	3.37	1.55	4.65	3.26	1.66
19.0	27	5.70	3.86	1.21	5.47	3.75	1.32	5.23	3.65	1.44	5.14	3.61	1.48	5.00	3.55	1.55	4.77	3.45	1.66
22.0	30	6.04	3.71	1.22	5.81	3.62	1.33	5.58	3.52	1.45	5.49	3.49	1.49	5.35	3.43	1.56	5.11	3.35	1.67
24.0	32	6.27	3.60	1.22	6.04	3.52	1.34	5.81	3.43	1.45	5.72	3.40	1.50	5.58	3.35	1.57	5.34	3.27	1.68

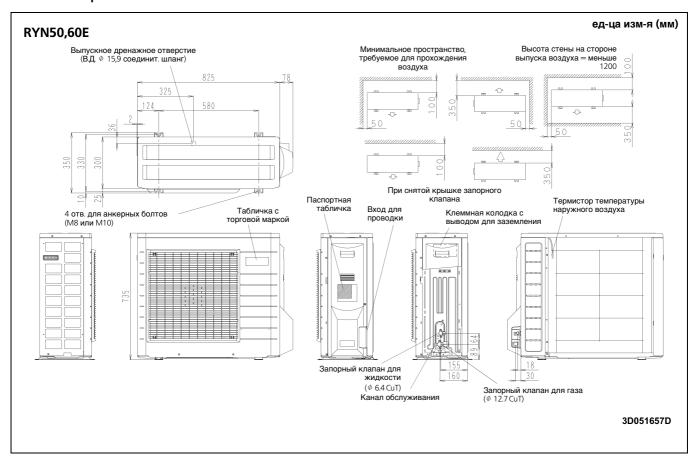
Обогрев		50		16.1						
Внутр.			Ter	иперату	ра нару	жного во	оздуха (°	CWB)		
EDB	-	10		-5		0		6		10
(°C)	TC	Pl	TC	Pl	TC	PI	TC	PI	TC	Pl
15.0	3.90	1.35	4.56	1.42	5.21	1.48	6.00	1.56	6.52	1.62
20.0	3.70	1.39	4.36	1.46	5.01	1.52	5.80	1.66	6.32	1.65
22.0	3.62	1.40	4.28	1.47	4.93	1.54	5.72	1.61	6.24	1.67
24.0	3.54	1.42	4.20	1.48	4.85	1.55	5.64	1.63	6.16	1.68
25.0	3.50	1.43	4.16	1.49	4.81	1.56	5.60	1.64	6.12	1.69
27.0	3.42	1.44	4.08	1.51	4.73	1.57	5.52	1.65	6.04	1.70

3D051923A

ОБОЗНАЧЕНИЯ			ПРИМЕЧАНИЯ	
Расход воздуха Коэффициент байпаса Темп. смоч. термом. на входе	(m³/min) (°C)	1	Приведенные номинальные значения являются полезными мощностями, включающими снижение и нагрева двигателя вентилятора внутреннего блока	
Темп. сух. термом. на входе	(°C)	2	показывает номинальную и входную мог	щность.
Оощал мощность Мощность по ощутимому теплу Входная мощность	(kW) (kW)	3	TC, PI и SHC необходимо рассчитать интерполирован основе значений вышеуказанных таблиц. (Использо должны только значения, приведенные в таблицах)	ваться
		4	Значения SHC, не приведенные в таблице, рассчиты на основе прямой пропорции между ближайшими значениями, заданными в таблице.	ваются
		5	Мощности основаны на следующих условиях: Соответствующая длина труб с хладагентом: 7.1 Перепад уровня: 0	5 m m
		6	Расход воздуха (AFR) и коэффициент байпаса (BF) приведены в таблице ниже.	
	Расход воздуха Коэффициент байпаса Темп. смоч. термом. на входе Темп. сух. термом. на входе Общая мощность Мощность по ощутимому теплу	Расход воздуха (m³/min) Коэффициент байпаса Темп. смоч. термом. на входе (°C) Темп. сух. термом. на входе (°C) Общая мощность (kW) Мощность по ощутимому теплу (kW)	Расход воздуха (m³/min) 1 Коэффициент байпаса Темп. смоч. термом. на входе (°C) Темп. сух. термом. на входе (°C) 2 Общая мощность (kW) Мощность по ощутимому теплу (kW) Входная мощность (kW) 4	Расход воздуха (m³/min) 1 Приведенные номинальные значения являются полезными мощностями, включающими снижение и нагрева двигателя вентилятора внутреннего блока темп. сух. термом. на входе (°C) нагрева двигателя вентилятора внутреннего блока полезными мощность вентилятора внутреннего блока нагрева двигателя вентилятора внутреннего блока темп. сух. термом. на входе (°C) 2 показывает номинальную и входную мого основе значений вышеуказанных таблиц. (Использо основе значений вышеуказанных таблиц. (Использо должны только значения, приведенные в таблицах на основе прямой пропорции между ближайшими значениями, заданными в таблице. 4 Значения SHC, не приведенные в таблице, рассчиты на основе прямой пропорции между ближайшими значениями, заданными в таблице. 5 Мощности основаны на следующих условиях: Соответствующая длина труб с хладагентом: 7. Перепад уровня: 0

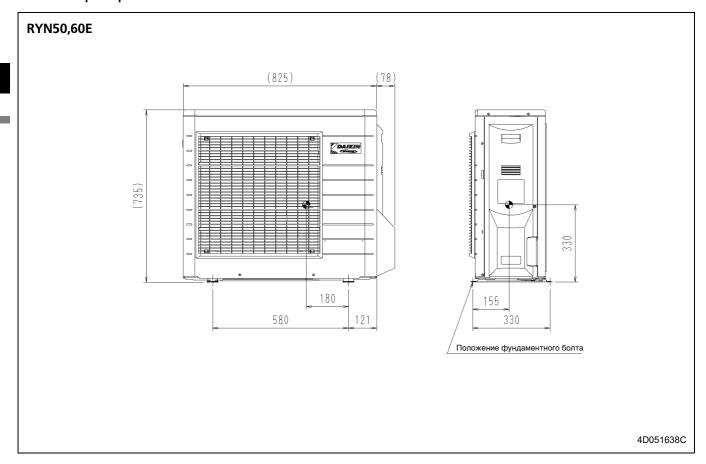
5 - 1 Таблицы мощности охлаждение/обогрев

FTYN	0F+RY	N60E														AFR		1	6.2
Охлах	кдение		50Hz 220-240V BF 0.29																
Вн	утр.		Температура наружного воздуха (°CDB)																
EWB	EDB		20			25			30			32			35			40	
(°C)	(°C)	TC	SHC	Pl	TC	SHC	Pl	TC	SHC	Pl	TC	SHC	Pl	TC	SHC	Pl	TC	SHC	PI
14.0	20	5.60	3.94	1.49	5.60	3.94	1.66	5.59	3.94	1.82	5.48	3.88	1.88	5.31	3.79	1.97	5.03	3.64	2.12
16.0	22	6.42	4.17	1.54	6.14	4.02	1.68	5.86	3.88	1.83	5.75	3.82	1.89	5.59	3.74	1.98	5.31	3.60	2.12
18.0	25	6.70	4.31	1.54	6.42	4.17	1.69	6.14	4.04	1.84	6.03	3.99	1.90	5.86	3.91	1.99	5.58	3.78	2.13
19.0	27	6.84	4.49	1.55	6.56	4.36	1.70	6.28	4.23	1.84	6.17	4.18	1.90	6.00	4.10	1.99	5.72	3.98	2.14
22.0	30	7.25	4.31	1.56	6.97	4.19	1.71	6.69	4.08	1.86	6.58	4.04	1.91	6.41	3.97	2.00	6.14	3.86	2.15
24.0	32	7.53	4.18	1.57	7.25	4.07	1.72	6.97	3.97	1.86	6.86	3.93	1.92	6.69	3.87	2.01	6.41	3.77	2.16

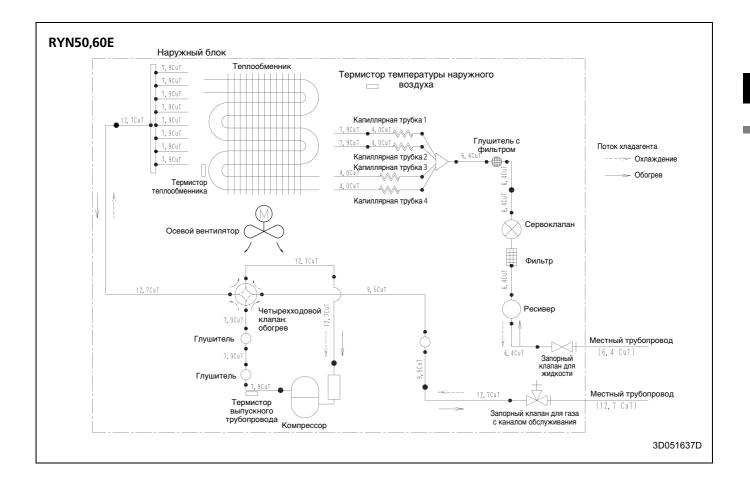

Обогрев		50Hz 220-240V						AFR		17.4	
Внутр.		Температура наружного воздуха (°СWВ)									
EDB	-	-10		-5		0		6		10	
(°C)	TC	PI	TC	Pl	TC	Pl	TC	PI	TC	PI	
15.0	4.71	1.73	5.50	1.81	6.29	1.89	7.24	1.99	7.87	2.06	
20.0	4.47	1.77	5.26	1.86	6.05	1.94	7.00	2.04	7.63	2.11	
22.0	4.37	1.79	5.16	1.87	5.95	1.96	6.90	2.06	7.54	2.13	
24.0	4.28	1.81	5.07	1.89	5.86	1.98	6.81	2.08	7.44	2.14	
25.0	4.23	1.82	5.02	1.90	5.81	1.99	6.76	2.09	7.39	2.15	
27.0	4.13	1.84	4.92	1.92	5.71	2.00	6.66	2.10	7.29	2.17	

3D051924A

Приведенные номинальные значения являются полезными мощностями, включающими снижение из-за нагрева двигателя вентилятора внутреннего блока показывает номинальную и входную мощность.				
				TC, PI и SHC необходимо рассчитать интерполированием на основе значений вышеуказанных таблиц. (Использоваться должны только значения, приведенные в таблицах).
Значения SHC, не приведенные в таблице, рассчитываются на основе прямой пропорции между ближайшими значениями, заданными в таблице.				
на следующих условиях: ина труб с хладагентом:	7.5 m 0 m			
и коэффициент байпаса (ниже.	BF)			
IC E	т номинальную и входную рассчитать интерполире указанных таблиц. (Испония, приведенные в табли реденные в табли ближайши между ближайши в таблице. а следующих условиях: на труб с хладагентом:			


Чертеж в масштабе и центр тяжести

6 - 1 Чертеж в масштабе



6 Чертеж в масштабе и центр тяжести

6 - 2 Центр тяжести

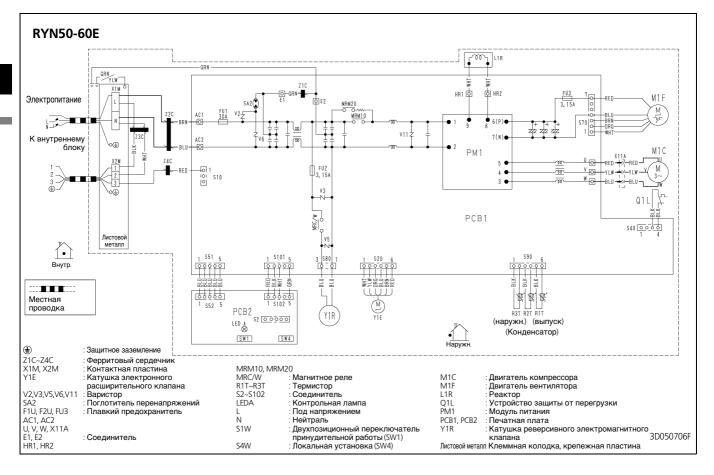
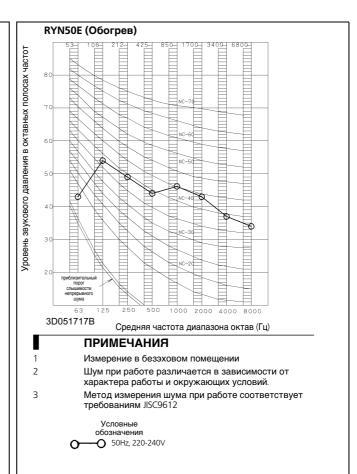
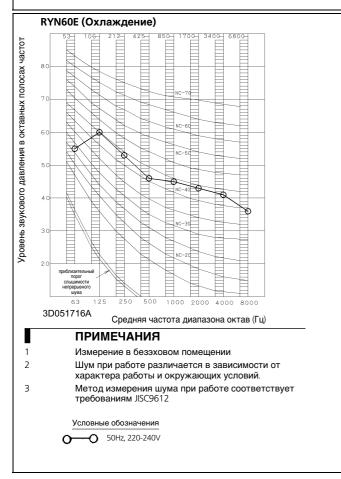


Схема трубной обвязки

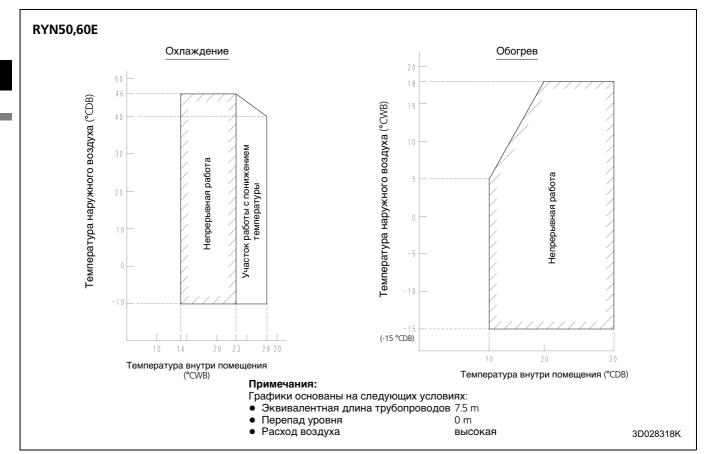
8 Монтажная схема

8 - 1 Монтажная схема


9 Данные по шуму


9 - 1 Спектр звукового давления

Условные обозначения


50Hz, 220-240V

10 Рабочий диапазон

