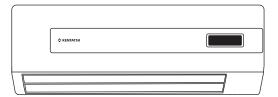


DK11-03.01.16


ИНСТРУКЦИЯ ПО МОНТАЖУ

КОНДИЦИОНЕР НАСТЕННОГО ТИПА

модели:

Стандартные (R410A) KSGC/KSRC21HFAN1 KSGC/KSRC26HFAN1 KSGC/KSRC35HFAN1 KSGC/KSRC53HFAN1 KSGC/KSRC61HFAN1 KSGC/KSRC70HFAN1

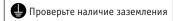
СОДЕРЖАНИЕ

меры по обеспечению безопасности	
Комплект поставки	
Монтажная схема	
Монтаж внутреннего блока	
Монтаж наружного блока	
Электрические подключения	
Вакуумирование холодильного контура	11
Проверка электрической схемы и поиск утечек хладагента	12
Пробная эксплуатация и тестирование	13
Электрические схемы внутренних блоков	14
Электрические схемы наружных блоков	15
Технические характеристики	17

Производитель оставляет за собой право вносить изменения в конструкцию, дизайн и функциональные возможности своей продукции без уведомления. Более подробную информацию по внесённым изменениям можно получить на сайте www.daichi.ru

МЕРЫ ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ

Для безопасной эксплуатации следуйте ниже перечисленным рекомендациям:


- Перед началом использования кондиционера обязательно прочитайте правила его эксплуатации и всегда следуйте им. Невыполнение правил может привести к поломке кондиционера, поражению электрическим током или порче имущества.
- Прочитав инструкцию, сохраните ее вместе с руководством пользователя кондиционера в легкодоступном месте для получения информации в будущем.
- Ремонт электрических узлов и соединений должен производиться обученным для этих целей персона-
- Монтаж и подключение кондиционера должны выполняться квалифицированными специалистами в соответствии с правилами техники безопасности и государственными стандартами.
- Ремонт кондиционера должен проводиться квалифицированным специалистам сервисного центра.
- В данной инструкции меры предосторожности подразделяются на ПРЕДУПРЕЖДЕНИЯ и ПРЕДОСТЕРЕЖЕНИЯ:

ПРЕДОСТЕРЕЖЕНИЯ Несоблюдение любого из ПРЕДОСТЕРЕЖЕНИЙ может привести к неправильной работе технике или выходу ее из строя.

• На протяжении всего текста данной инструкции используются следующие символы техники безопасности:

• По окончании монтажа проверьте правильность его выполнения.

1 предупреждения

- Нельзя доверять монтаж кому-либо, кроме дилера или другого специалиста в этой области. (Нарушение правил монтажа может привести к протечке воды, вызвать поражение электрическим током или явиться причиной пожара.)
- Устанавливайте кондиционер согласно инструкции: отступление от требований монтажа может явиться причиной протечек воды, поражения электрическим током или пожара.
- Следите за тем, чтобы использовались монтажные компоненты из комплекта поставки или из специфицированной номенклатуры. (Использование других компонентов чревато возможностью ухудшения работы, к протечке воды, вызвать поражение электрическим током или явиться причиной пожара.)
- Устанавливайте кондиционер на прочном основании, способном выдержать вес блока. (Несоответствующее основание или отступление от требований монтажа может привести к травмам при падении блока с основания.)
- Электрический монтаж следует выполнять согласно руководству по монтажу и с соблюдением ГОСТ на этот вид работ или в соответствии с утвержденными отраслевыми нормативными документами. (Недостаточная компетентность или неправильный электрический монтаж могут привести к поражению электрическим током или к пожару.)
- Для электрической проводки используйте кабель, длина которого должна покрывать все расстояние без наращиваний и без удлинителей. Не подключайте к этой же розетке другие нагрузки. (Несоблюдение данного правила может привести к перегреву, поражению электрическим током или пожару.)
- Для электрического соединения внутреннего блока с наружным используйте кабель только указанных типов. Надежно закрепляйте провода межблочных соединений таким образом, чтобы на их контактные выводы не воздействовали никакие механические нагрузки. (Ненадежные соединения или крепления могут привести к перегреву клемм или к пожару.)
- После подключения кабелей межблочных соединений и проводов питания расправьте их таким образом, чтобы не оказывать механических нагрузок на крышки или панели электрических блоков. Закройте провода крышками. (Неплотное прилегание крышки может привести к перегреву клемм, вызвать поражение электрическим током или явиться причиной пожара.)

(1)

- Если во время монтажа произошла утечка хладагента, проветрите помещение. По окончании всех монтажных работ убедитесь в отсутствии утечек хладагента.
- 0
- При монтаже или переустановке блоков системы следите за тем, чтобы в трубопроводы хладагента не попадали никакие вещества, кроме самого хладагента (например, воздух или влага). (Любое попадание в контур хладагента воздуха или других посторонних веществ приводит к аномальному повышению давления или к засорению системы, что чревато нанесением травм или нарушению работы системы.)
- Перед запуском компрессора проверьте надежность подключения трубопроводов хладагента. (Внутрь системы может попасть воздух, что может привести к отклонению давления от нормы и нарушению работы системы.)
- Проверьте наличие заземления. Не используйте для заземления водопроводные трубы, батареи центрального отопления, громоотводы и телефонную сеть. (Ненадлежащее заземление может привести к поражению электрическим током. Сильные колебания тока от молнии или от других источников могут вызывать повреждение кондиционера.)

• Проконтролируйте установку предохранителя утечки тока на землю (УЗО). Отсутствие предохранителя утечки тока на землю может явиться причиной поражения электрическим током.

ПРЕДОСТЕРЕЖЕНИЯ

• Не устанавливайте кондиционер в местах, где существует опасность утечки воспламеняющихся газов. (Если газ вытекает и накапливается около блока, это может привести к пожару.)

- Прокладывайте дренажный шланг строго согласно инструкции. (Нарушение правил сооружения трубо-провода может привести к протечкам.)
- Замечания по установке наружного блока (только для модели с тепловым насосом). (Для исключения замерзания конденсата на выходе из дренажного шланга рекомендуется установить электрический подогреватель.)
- При затягивании гайки вальцовки используйте динамометрический гаечный ключ. (Если затянуть гайку вальцовки слишком сильно, она может в процессе длительной эксплуатации треснуть и вызвать утечку хладагента.)

комплект поставки

п/п	Составляющие комплекта поставки*	Кол-во
1	Внутренний блок	1
2	Наружный блок	1
3	Монтажная пластина	1
4	Монтажные болты ST3.9x25	8
5	Дюбель	8
6	Герметик	1
7	Дренажный патрубок	1
8	Пульт управления с элементами питания	1
9	Винт ST2.9x10	2
10	Держатель пульта управления	1
11	Руководство пользователя	1
12	Инструкция по монтажу	1

^{*} Трубопровод хладагента приобретается за отдельную плату, а его длина и диаметр подбираются в соответствии с производительностью кондиционера и конкретным размещением блоков при монтаже.

МОНТАЖНАЯ СХЕМА

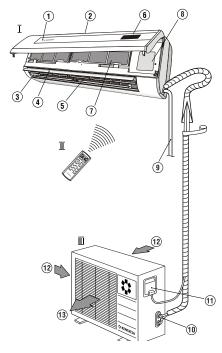


Рис. 1

І – ВНУТРЕННИЙ БЛОК

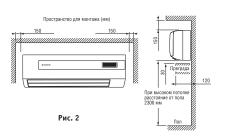
- 1. Лицевая панель.
- 2. Впускной диффузор поступающего воздуха.
- 3. Выпускной диффузор.
- 4. Горизонтальная воздухораспределительная заслонка.
- 5. Вертикальные воздухораспределительные жалюзи.
- 6. Табло индикации.
- 7. Воздухоочистительные фильтры.
- 8. Кнопка вкл/выкл кондиционера при отсутствии ИКпульта.
- 9. Дренажный шланг для отвода конденсата.

II – ПУЛЬТ ДИСТАНЦИОННОГО УПРАВЛЕНИЯ III – НАРУЖНЫЙ БЛОК

- 10. Трубопровод хладагента в теплоизоляции.
- 11. Крышка электронного блока.
- 12. Вход атмосферного воздуха.
- 13. Выброс воздуха.

ПРИМЕЧАНИЕ:

- На рисунке кондиционер изображен схематично для пояснения проводимых работ. Внешний вид реального образца может незначительно отличаться.
- Медный фреоновый трубопровод должен быть теплоизолирован.

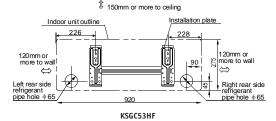


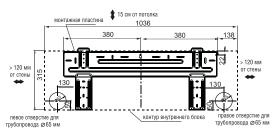
МОНТАЖ ВНУТРЕННЕГО БЛОКА

- Образующийся во время работы блока конденсат должен беспрепятственно стекать в поддон и отводиться наружу.
- Не допускается размещение внутреннего блока кондиционера около двери.
- Размеры свободного пространство справа и слева от блока приведены на рис. 2.
- Чтобы избежать повреждения стены, используйте для крепления винты и дюбели.
- Для достижения наилучшей циркуляции воздуха внутренний блок должен быть размещен на расстоянии не менее 150 мм от потолка.
- При изменении длины трубопровода необходимо изменить количество заправленного в него хладагента (рис. 1).

І. Крепление монтажной пластины

1. Расположите монтажную пластину горизонтально (рис. 3) на стене в том месте, где будет крепиться внутренний блок кондиционера. Соблюдайте указанные расстояния (рис. 3a).




- 2. Для крепления монтажного кронштейна к стене просверлите отверстия на глубину 32 мм.
- 3. Забейте в просверленные отверстия пластмассовые дюбеля и с помощью винтов-саморезов прикрепите к ним монтажный кронштейн.
- 4. Проверьте надежность фиксации кронштейна, после этого просверлите отверстие для трубки.

150mm or more to ceiling Indoor unit outline 192 120mm or more to wall 120mm or provided the first side refrigerant pipe hole \$65

KSGC21HF, KSGC26HF

150mm or more to ceiling Indoor unit outline 160 120mm or more to wall Right rear side refrigerant pipe hole \$65\$ KSGC35HF

Puc. 3a KSGC61HF, KSGC70HF

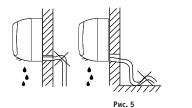
II. Сверление отверстий в стене

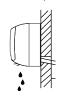
Определите положение отверстия для трубопровода согласно схеме и отметкам на монтажной пластине. Просверлите одно отверстие диаметром 65 мм с небольшим уклоном в сторону улицы (рис. 4).

Если стена обшита металлом или деревом, обязательно вставьте в это отверстие изолирующую втулку.

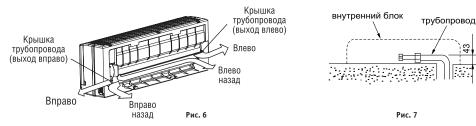
Рис. 4

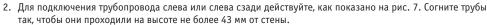
6





III. Подключение трубопровода и дренажного шланга


- 1. Проведите дренажный шланг с уклоном наружу. Не допускайте ошибок, показанных на рис. 5.
- 2. Если Вы удлиняете дренажный шланг, изолируйте удлиняющую часть шланга защитной трубкой.



Трубопровод

1. Для подключения трубопровода к внутреннему блоку справа или справа сзади снимите заглушку с левой стороны задней крышки. Объясните пользователю, что заглушку нужно сохранить на тот случай, если кондиционер в будущем установят в другое место (рис. 6).

- 3. Закрепите концы труб (см. раздел «Подключение холодильного контура»).
- 4. Сдвиньте нижний край внутреннего блока вверх к стене. Затем слегка подвигайте блок вверх-вниз и вправо-влево, чтобы проверить, надежно ли он прикреплен к стене (рис. 8).

IV. Крепление трубопровода

- Прочно закрепите соединительный кабель, дренажный шланг, провода и трубопровод изолирующей лентой, как показано на рис. 9.
- Конденсат из внутреннего блока будет собираться в специальную камеру и удаляться наружу. Не помещайте в эту камеру никакие предметы.

Внимание!

- Подключите сначала внутренний блок, а затем наружный. Расположите трубы в правильном порядке и скрепите их.
- Не допускайте выхода труб с обратной стороны внутреннего блока.
- Дренажный шланг не должен провисать.
- Теплоизолируйте обе трубы холодильного контура, выходящие из внутреннего блока.
- Дренажный шланг должен располагаться под соединительными трубами, в противном случае конденсат может затекать внутрь кондиционера.
- Не допускайте перекручивания силового провода питания и его пересечения с другими проводами.
- Дренажный шланг должен иметь уклон наружу для свободного стекания конденсата.

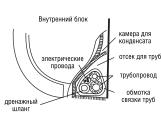
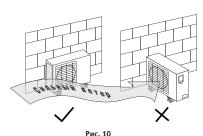
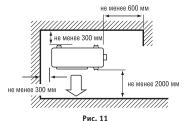


Рис. 9




МОНТАЖ НАРУЖНОГО БЛОКА

МЕРЫ БЕЗОПАСНОСТИ ПРИ МОНТАЖЕ НАРУЖНОГО БЛОКА

Поверхность, на которую устанавливается наружный блок кондиционера, должна быть жесткой, чтобы не возрастали шум и вибрация.

- Если в том месте, где устанавливается наружный блок кондиционера, бывает сильный ветер (например, на морском побережье), разместите блок вдоль стены или установите ограждение. В противном случае вентилятор кондиционера не сможет нормально работать при сильном ветре (рис. 10).
- При подвешивании наружного блока кондиционера в стену его крепление должно соответствовать техническим требованиям.
- Подвешивать блок можно на кирпичную или бетонную стену или стену аналогичной прочности.
- Соединение крепежного кронштейна со стеной и кондиционером должно быть прочным, устойчивым и надежным. Убедитесь, что тепло от конденсатора отводится беспрепятственно. Не должно быть преград выходящему из наружного блока кондиционера воздушному потоку.
- Если над внешним блоком установлен навес, защищающий его от дождя и солнечных лучей, убедитесь, что он не мешает отводу тепла от конденсатора.
- Выберите такое направление выхода воздуха из наружного блока, чтобы воздушный поток не встречал препятствий (рис. 11).
- Свободное пространство сзади и справа от наружного блока должно составлять не менее указанных на рис. 11.
- Входящий и выходящий из кондиционера потоки воздуха не должны быть направлены на животных и растения.
- Место должно быть удобным для монтажа, сухим, с хорошим доступом воздуха, но без сильного ветра.
- Поверхность, на которую устанавливается наружный блок кондиционера, должна быть достаточно прочной, чтобы выдержать его вес. Наружный блок надо размещать так, чтобы не создавался сильный шум и вибрация.
- Шум и воздушный поток от наружного блока не должны мешать соседям владельца кондиционера (не размещайте блок возле соседских окон).

]	1	L1
1	0	
1		
L4		
1 1		
	- P	
1	1	L2

Наружный блок	L1	L2	L3	L4
KSRC21	685	460	276	260
KSRC26,35	700	458	250	235
KSRC53,61	760	530	300	285
KSRC70	845	560	365	335

УСТАНОВКА НАРУЖНОГО БЛОКА НА КРЫШУ

- Если наружный блок устанавливается на крышу здания, убедитесь, что он размещается строго вертикально. Убедитесь, что поверхность достаточно прочная, а крепление блока достаточно надежно.
- Соблюдайте местные нормативы, касающиеся установки оборудования на крышу.
- В некоторых случаях установка наружного блока на крышу или фасадную стену здания может привести к сильному шуму и вибрации при работе кондиционера и сделать нормальную эксплуатацию и обслуживание кондиционера невозможной.

КРЕПЛЕНИЕ НАРУЖНОГО БЛОКА

Закрепите наружный блок болтами с гайками ⊘8 или ⊘10. Блок должен быть надежно закреплен на прочной стене и расположен строго горизонтально.

8

IM-KSGC_DK11-03.01.16.indd 8

L3

ДРЕНАЖ КОНДЕНСАТА

Вставьте уплотнитель в дренажный патрубок, затем вставьте патрубок в отверстие в дренажном поддоне наружного блока и закрепите его, повернув на 90°.

Если кондиционер будет работать в режиме обогрева, то в наружном блоке будет образовываться конденсат. В этом случае нужно удлинить дренажный патрубок дополнительным шлангом, приобретенным отдельно.

подключение холодильного контура

1. Развальцовка

Основная причина утечки хладагента из фреонового трубопровода кондиционера – некачественная развальцовка труб. Выполняйте развальцовку, как описано ниже (рис. 12–16):

А: Отрежьте трубы и кабель нужной длины:

- 1. Измерьте расстояние между внутренним и внешним блоками кондиционера.
- Отрежьте трубы длиной чуть больше, чем расстояние между блоками.
- 3. Отрежьте кабель длиной на 1,5 м длиннее труб.

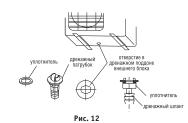
В: Удаление заусенцев

Тщательно удалите все заусенцы со среза трубы. Во время удаления заусенцев держите трубу срезом вниз, чтобы стружки и пыль не попали внутрь неё.

С: Установка накидных гаек

Отсоедините накидные гайки, прикрепленные к внутреннему и наружному блокам кондиционера. Затем установите их на трубки, с которых уже удалены заусенцы. После развальцовки труб установить гайки уже нельзя!

D: Развальцовка труб


Плотно закрепите медную трубку в зажиме (рис.16). Размер зажима зависит от диаметра трубы (см. таблицу):

Наружный	C (1	мм)
диаметр, мм	Максимум	Минимум
Ø6,35	1,3	0,7
Ø9,53	1,6	1,0
Ø12,7	1,8	1,0
Ø16	2.4	2.2

подсоединение труб к блоку

- Установите развальцованные трубы соосно со штуцером (рис. 17).
- Закрутите накидную гайку, а затем затяните ее двумя гаечными ключами обычным и динамометрическим (см. рис. 18).

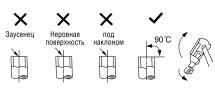
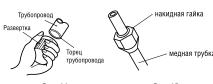
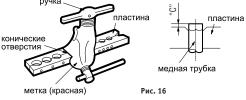




Рис. 13

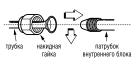


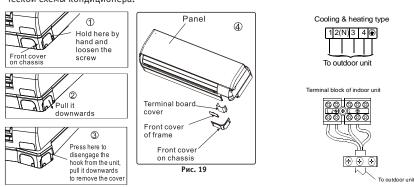
Рис. 17

Рис. 18

q

ЭЛЕКТРИЧЕСКИЕ ПОДКЛЮЧЕНИЯ

- 1. Электрические подключения выполнять в соответствии с электрическими схемами, приведенными в приложении и на панелях наружного и внутреннего блоков кондиционера.
- 2. Если электропроводка не подходит для питания кондиционера, электрик не должен подключать к ней кондиционер. Нужно объяснить владельцу кондиционера суть проблемы и способы ее устранения.
- 3. Напряжение питания должно поддерживаться в пределах от 90 до 110% от номинального. При понижении напряжения возможны следующие неполадки: вибрация магнитного пускателя, ведущая к повреждению контактов; перегорание предохранителя и т.д
- 4. В силовом контуре нужно установить предохранитель и сетевой размыкатель питания, срабатывающий при токе, в 1,5 раза большем максимального рабочего тока кондиционера.
- 5. Убедитесь, что кондиционер заземлен.
- 6. Электрическое подключение должно полностью соответствовать государственным стандартам и выполняться квалифицированными электриками.
- 7. К автомату защиты, к которому подключается кондиционер, нельзя подключать другие электроприборы. Рекомендуемое сечение проводов и параметры предохранителей указаны в таблице.

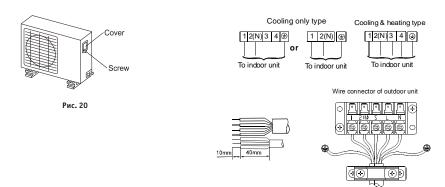

Производительность	Питание	Питание Размыкатель/ Предохранитель	
до 3,5 кВт	220-240V~50 Гц	10 A / 15 A	≥ 1,5 mm²
от 3,5 кВт до 5,3 кВт	220-240V~50 Гц	16 A	≥ 1,5 mm²
от 6.1 до 7.0 кВт	220-240V~50 Гц	32A / 25 A	≥ 2,5 mm²

Внимание!

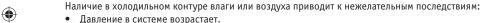
Напряжение питания не должно быть ниже, чем номинальное напряжение, указанное на кондиционере.

ПОДКЛЮЧЕНИЕ КАБЕЛЯ К ВНУТРЕННЕМУ БЛОКУ

- 1. Проверьте зажимы, крепящие провода в клеммной коробке, которые могли ослабиться из-за вибрации во время транспортировки кондиционера. При нарушении контактов возможен нагрев и возгорание проводов. Поэтому проверьте плотность контактов и закрепите соединение при необходимости.
- 2. Проверьте параметры электропитания.
- 3. Убедитесь, что защитный автомат рассчитан на ток, протекающий при работе кондиционера.
- 4. Убедитесь, что сечение кабеля электропитания достаточно для кондиционера.
- 5. Снимите панель и винты и выньте крышку клеммной коробки (рис. 20).
- 6. Подключите кабели в соответствии с маркировкой контактов.
- Изолируйте кабели, не подключенные к контактам, изолентой, чтобы они не касались элементов электрической схемы кондиционера.


ПОДКЛЮЧЕНИЕ КАБЕЛЯ К НАРУЖНОМУ БЛОКУ

- 1. Снимите крышку электрического отсека наружного блока (рис. 19).
- 2. Подключите соединительные провода к контактам так, чтобы числа, указанные на контактах внутреннего и наружного блоков, совпадали.


- 3. Чтобы вода не попадала в электрический отсек, защитите провода, как показано на монтажных схемах внутреннего и наружного блоков кондиционера.
- 4. Те провода, которые не используются, надо изолировать полихлорвиниловой лентой. Провода не должны касаться электрических компонентов и металлических частей кондиционера.

Примечание:

1) Электрические подключения выполнять в соответствии с электрической схемой, закрепленной на внутренней поверхности крышки электронного блока. 2) Всегда устанавливайте предохранитель утечки на землю.

ВАКУУМИРОВАНИЕ ХОЛОДИЛЬНОГО КОНТУРА

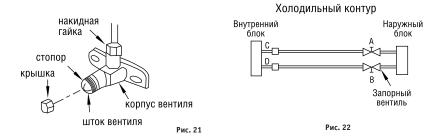
- Повышается рабочий ток.
- Снижается мощность охлаждения или обогрева кондиционера.
- Вода в холодильном контуре может замерзнуть и перекрыть капиллярную трубку контура.
- Влага может вызвать коррозию компонентов холодильного контура.

Поэтому необходимо проверить внутренний блок и фреоновый трубопровод на наличие утечек, и полностью удалить из системы влагу, воздух и другие неконденсирующиеся примеси.

ПОДГОТОВКА К ВАКУУМИРОВАНИЮ

- Подготовка: проверьте каждую трубку холодильного контура (жидкостную и газовую линии). Убедитесь, что все трубки подключены правильно, а электрическое подключение для пробного запуска кондиционера завершено. Снимите крышки с запорных вентилей жидкостной и газовой труб наружного блока. В этот момент вентили должны быть закрыты.
- Если приходится демонтировать кондиционер и устанавливать в другом месте, необходимо вакуумировать холодильный контур с помощью вакуумного насоса.
- Хладагент можно добавлять в холодильный контур кондиционера только в жидком состоянии.

Использование одного и того же вакуумного насоса для работы с различными хладагентами может привести к повреждению вакуумного насоса или блока.


		Количество добавляемого хладагента		
Длина Lтр трубо- провода, м	Метод вакуумирования	Жидк. трубопровод ∅6,35	Жидк. трубопровод ∅9,52	
< 5	С помощью манометрического коллектора			
> 5	С помощью манометрического коллектора	М= (Lтр-5)х20г	М= (Lтр-5)х40г	

(

ПРАВИЛА ПОЛЬЗОВАНИЯ ЗАПОРНЫМ ВЕНТИЛЕМ

- Откройте шток вентиля до положения, когда он коснется стопора (рис. 20). Не открывайте его сильнее.
- Аккуратно закрутите крышку штока вентиля гаечным ключом.
- Крутящий момент для крышки вентиля указан в таблице на стр. 9 (~1800 Н*см)

ПОСЛЕДОВАТЕЛЬНОСТЬ ПРОЦЕССА ВАКУУМИРОВАНИЯ

(метод манометрического коллектора, который описан в инструкции, прилагаемой к нему)

- 1. Плотно затяните накидные гайки A, B, C и D (рис.22). Подключите заправочный шланг манометрического коллектора к запорному вентилю низкого давления (газовая труба).
- 2. Подключите другой заправочный шланг к вакуумному насосу.
- 3. Полностью откройте вентиль Lo манометрического коллектора (рис.23).
- 4. Включите вакуумный насос и начните откачку воздуха из холодильного контура. После начала вакуумирования слегка ослабьте накидную гайку запорного вентиля в газовой трубе. Проверьте, входит ли воздух в трубу (при этом изменяется шум насоса и вакуумметр начинает показывать 0, а не отрицательное значение, как было до этого).
- Продолжительность процесса вакуумирования составляет не менее 15 мин. В конце его давление, показываемое вакуумметром, должно достичь - 760 мм рт. ст. (-1.0x10⁵ Па). После завершения откачки полностью закройте вентиль Lo и выключите вакуумный насос.
- 6. Поверните шток запорного вентиля В на 45° против часовой стрелки и подержите в таком положении 6–7 сек. Убедитесь, что давление, показываемое вакуумметром, чуть выше атмосферного давления.
- 7. Отключите заправочный шланг от вакуумметра.
- 8. Полностью откройте штоки запорных вентилей В и А и аккуратно закрутите их крышки.

V

ПРОВЕРКА ЭЛЕКТРИЧЕСКОЙ СХЕМЫ И ПОИСК УТЕЧЕК ХЛАДАГЕНТА

ПРОВЕРКА ЭЛЕКТРИЧЕСКОЙ СХЕМЫ

После того, как монтаж кондиционера завершен, проверьте правильность и безопасность электрического подключения:

- 1. **Изоляция:** Сопротивление изоляции должно составлять не менее 2 МОм.
- 2. Заземление: После того, как кондиционер заземлен, измерьте сопротивление заземления специальным омметром. Оно должно составлять не более 4 Ом.
- 3. Поиск утечек тока: В процессе пробной эксплуатации кондиционера монтажник должен проверить, нет ли утечек тока, с помощью ампервольтметра. Если обнаружена утечка тока, надо немедленно выключить кондиционер, выяснить причину утечки и устранить ее.

Рис. 24

ПОИСК УТЕЧЕК ХЛАДАГЕНТА

Убедитесь, что газ не утекает из мест соединений труб холодильного

FMC

контура с блоками кондиционера.

- 1. Поиск утечек с помощью мыльного раствора: Мягкой кистью нанесите водный раствор мыла или жидкое нейтральное моющее средство на места подключения холодильного контура к внутреннему и наружному блокам кондиционера. Если появляются пузыри значит, в этом месте герметичность контура нарушена (рис. 23).
- 2. Рекомендуется проверить герметичность с помощью течеискателя.

Обозначения на рис.24:

А: запорный вентиль на линии низкого давления

В: запорный вентиль на линии высокого давления

С и D: места подключения внутреннего блока.

ПРОБНАЯ ЭКСПЛУАТАЦИЯ И ТЕСТИРОВАНИЕ

1. Убедитесь в правильности монтажа, для чего проведите проверки в соответствии с таблицей:

Пункты проверки	Симптом	Контроль
Правильность установки внутреннего и наружного блоков на прочных основаниях	Падение, вибрация, шум	
Отсутствие утечек газообразного хладагента	Нарушение функций охлаж- дения/нагрева	
Тепловая изоляция труб для газообразного и жидкого хладагента и удлинителя дренажного шланга внутреннего блока	Утечка конденсата	
Правильность монтажа дренажной линии	Утечка конденсата	
Правильность заземления системы	Утечка электрического тока	
Использование специализированных проводов для меж- блочных соединений	Выход из строя или загорание	
Отсутствие препятствий в тракте подачи входящего или выходящего воздуха внутреннего или наружного блока. Открытое состояние запорных вентилей	Нарушение функций охлаж- дения/нагрева	
Нарушение приема внутренним блоком сигналов дистанционного управления	Нерабочее состояние	

- 2. После того, как Вы проверили электрическую систему кондиционера и убедились, что нет утечек хладагента, проведите пробную эксплуатацию и тестирование кондиционера в ручном режиме. Его длительность – не менее 30 мин.
- Откройте панель внутреннего блока и поднимите ее до щелчка.
- Дважды нажмите кнопку ручного управления кондиционером. Световой индикатор работы кондиционера включится, а кондиционер начнет работать в режиме принудительного охлаждения помещения.
- Проверьте, работают ли все функции кондиционера (охлаждение, нагрев и другие). Обратите особое внимание на то, свободно ли удаляется конденсат из внутреннего блока.
- После тестирования выключите кондиционер, нажав кнопку ручного управления еще раз. Световой индикатор работы кондиционера погаснет, а кондиционер прекратит работу.
- 3. Проведите пробную эксплуатацию и тестирование кондиционера с пульта управления.

ВНИМАНИЕ! При перезапуске может сработать 3-минутная защита повторного старта.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Внутренний блок			KSGC21HF	KSGC26HF	KSGC35HF
Наружный блок		KSRC21HF	KSRC26HF	KSRC35HF	
Электропитан	ие	В, Гц, Ф	1, 220~240,50HZ	1,220~240,50HZ	1,220~240,50HZ
0хлаждение	Производительность	кВт	2,05	2,5	3,52
	Потребляемая мощность	Вт	640	820	1165
	Номинальный ток	Α	2,8	3,7	5,2
	Энергоэффективность (EER)	-	3,21	3,21	3,01
Нагрев	Производительность	кВт	2,34	2,64	4,1
	Потребляемая мощность	Вт	650	770	1070
	Номинальный ток	Α	2,8	3,4	4,6
	Энергоэффективность (СОР)	-	3,61	3,61	3,41
Осушающая способность		л/ч	0,8	1,0	1,1
Максимальна	я потребляемая мощность	Вт	900	1100	1500
Максимальны	й ток: рабочий / пусковой	Α	4,4 / 15	5,5 / 21,7	8 / 29,9
Расход воздух	ka	м³/ч	420	460	540
Уровень шума	внутрен. блока, мин./макс.	дБА	29/35	31/37	35/41
Внутренний	Габаритные размеры (Ш x В x Г)	мм	710 x 189 x 250	710 x 189 x 250	790 x 190 x 275
блок	масса без упаковки /с упаковкой	КГ	7/8,5	7/8,5	9/11
Уровень шума	наружного блока	дБА	50	54	53
Наружный	Габаритные размеры (Ш x В x Г)	мм	685 x 430 x 260	700 x 535 x 235	700 x 535 x 235
блок	Масса без упаковки / с упаковкой	КГ	24/26,5	24,5/26,5	24,5/26,5
Масса хладаге	ента (R22)	Г	680	620	700
Диапазон под	держиваемой температуры	°C	17-30	17-30	17-30
Допустимый д	 циапазон рабочей температуры	°C	-7~43	-7~43	-7~43

Внутренни	ій блок		KSGC53HF	KSGC61HF	KSGC70HF
Наружный блок			KSRC53HF	KSRC61HF	KSRC70HF
Электропитан	ие	В, Гц, Ф	1, 220~240,50HZ	1,220~240,50HZ	1,220~240,50HZ
0хлаждение	Производительность	кВт	4,98	5,86	7,03
	Потребляемая мощность	Вт	1875	2550	2510
	Номинальный ток	Α	8,1	12	11,5
	Энергоэффективность (EER)	-	2,81	2,41	2,81
Нагрев	Производительность	кВт	5,27	6,15	7,32
	Потребляемая мощность	Вт	1730	2450	2280
	Номинальный ток	A	7,6	11,5	10,4
	Энергоэффективность (СОР)	-	3,21	2,64	3,21
Осушающая с	пособность	л/ч	1,8	2,2	2,6
Максимальна	я потребляемая мощность	Вт	2700	3200	3500
Максимальны	ій ток: рабочий / пусковой	Α	13,4 / 34,5	16 / 36,8	18 / 45
Расход воздух	xa	м³/ч	750	1000	1050
Уровень шума	в внутрен. блока, мин./макс.	дБА	40/46	40/46	40/46
Внутренний	Габаритные размеры (Ш x В x Г)	ММ	940 x 275 x 198	1030 x 313 x 221	1030 x 313 x 221
блок	масса без упаковки /с упаковкой	КГ	10/13	13/20	13,5/20
Уровень шума	а наружного блока	дБА	59	57	60
Наружный	Габаритные размеры (Ш x В x Г)	мм	760 x 590 x 285	760 x 590 x 285	845 x 695 x 335
блок	Масса без упаковки / с упаковкой	КГ	39/42	40/42	53/57
Масса хладаг	ента (R22)	Г	1230	1400	1800
Диапазон под	держиваемой температуры	°C	17-30	17-30	17-30
Допустимый д	 циапазон рабочей температуры	°C	-7~43	-7~43	-7~43

для заметок

(

IS THE TRADEMARK OF KENTATSU DENKI, JAPAN